Диссертация на тему «Роль метаболических нарушений в патологии сердечно-сосудистой системы при акромегалии», скачать бесплатно автореферат по специальности ВАК РФ 14.00.03 — Эндокринология

Эпигенетические механизмы нарушений костного ремоделирования при гиперкортицизме и акромегалии

СПИСОК ЛИТЕРАТУРЫ

1. Уйасшк P., Marc J., Ostanek B. Epigenetic mechanisms in bone. //Clin. Chem. Lab. Med. — 2022 — Vol.52 (5)- pp. 589-608. DOI: 10.1515/cclm-2022-0770

2. Kapinas K., et.al. miR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop. //J Biol Chem. 2022 — Vol. 285(33) pp. 25221-31. Doi: 10.1074/jbc.M110.116137.

3. Bellido T. Osteocyte-driven bone remodeling. //Calcif Tissue Int. 2022 — Vol. 94(1) — pp. 25-34. Doi: 10.1007/s00223-013-9774-y.

4. Graham JM, Ayati BP, Holstein SA, Martin JA. The role of osteocytes in targeted bone remodeling: a mathematical model. //PLoS One. 2022 May 22 Vol. 8(5): e63884. Doi: 10.1371/journal.pone.0063884.

5. Гребенникова Т.А., Белая Ж.Е., Рожинская Л.Я., Мельниченко Г.А., Дедов И.И. Эпигенетические аспекты остеопороза. // Вестник РАМН. -2022. — T.70 — №5.- с.541-548. Doi: 10.15690/vramn.v70.i5.1440

6. Silva I, Branco JC. Rank/Rankl/opg: literature review. //Acta Reumatol Port. 2022. — Vol. 36(3) — pp. 209-18

7. Belaya Z.E., Rozhinskaya L.Y., Melnichenko G.A., Solodovnikov A.G., Dragunova N.V., Iljin A.V., Dzeranova L.K., Dedov I.I. Serum extracellular secreted antagonists of the canonical Wnt/p catenin signaling pathway in patients with Cushing’s syndrome. //Osteoporos Int. 2022- Vol. 24 (8): pp. 2191-2199. DOI: 10.1007/s00198-013-2268-y

8. Husain A, Jeffries MA. Epigenetics and Bone Remodeling. //Curr Osteoporos Rep. 2022. — Vol. 15(5). — pp. 450-458. Doi: 10.1007/s11914-017-0391-y.

9. Delgado-Calle J, Riancho J. The role of DNA methylation in common skeletal disorders. //Biology. 2022 — Vol. 1 (3) pp. 698-713. doi: 10.3390/biology1030698

10.Gibney E., Nolan C. Epigenetics and gene expression. //Heredity. 2022.-Vol.105 (1).- pp. 4-13. DOI:10.1038/hdy.2022.54.

11.Portela A., Esteller M. Epigenetic modifications and human disease. //Nat. Biotechnol. 2022.-Vol.28 (10). — pp. 1057-1068. DOI:10.1038/nbt.1685.

12.Delgado-Calle J., Sañudo C., Fernández A., García-Renedo R., Fraga M., Riancho J. Role of DNA methylation in the regulation of the RANKL-OPG system in human bone. //Epigenetics. 2022. Vol. 7 (1).- pp. 83-91. DOI:10.4161/epi.7.1.18753.

13.Arnsdorf E., Tummala P., Castillo A., Zhang F., Jacobs C. The epigenetic mechanism of mechanically induced osteogenic differentiation. //J. Biomech. 2022. — Vol. 43 (15). — pp. 2881-2886. DOI:10.1016/j.jbiomech.2022.07.033

14.Kitazawa S., Kitazawa R. Epigenetic control of mouse receptor activator of NF-kB ligand gene expression. //Biochem. Biophys. Res. Commun. 2002. Vol. 293 (1). — pp. 126-131. DOI: 10.1016/s0006-291x(02)00189-4.

15.Kitazawa R., Kitazawa S. Methylation status of a single CpG locus 3 bases upstream of TATA box of receptor activator of nuclear factor kB ligand (RANKL) gene promoter modulates cell and tissue specific RANKL expression and osteoclastogenesis. //Mol. Endocrinol. 2007.- Vol. 21 (1)- pp. 148-158. DOI: 10.1210/me.2006-0205

16.Schroeder T., Nair A., Staggs R., Lamblin A., Westendorf J. Gene profile analysis of osteoblast genes differentially regulated by histone deacetylase inhibitors. //BMC Genomics. 2007. — Vol.8 (1)- p.362. DOI:10.1186/1471-2164-8-362.

17.Schroeder T., Westendorf J. Histone deacetylase inhibitors promote osteoblast maturation. //J. Bone Miner Res. 2005. — Vol. 20 (12) — pp. 2254-2263. DOI: 10.1359/jbmr.050813 18.Lee H., Suh J., Kim A., Lee Y., Park S., Kim J. Histone deacetylase-1 mediated histone modification regulates osteoblast differentiation. //Mol. Endocrinol. 2006. — Vol. 20 (10)- pp.2432-2443. doi:10.1210/me.2006-0061

19.Fusco S, Maulucci G., Pani G. Sirtl: Defeating senescence? //Cell. Cycle. 2022.- Vol. 11 (22) — pp.4135-4146. D01:10.4161/cc.22074

20.Nakamura T., Kukita T., Shobuike T., Nagata K., Wu Z., Ogawa K., Hotokebuchi T., Kohashi O., Kukita A. Inhibition of histone deacetylase suppresses osteoclastogenesis and bone destruction by inducing IFN production. //J. Immunol. 2005.-Vol.175(9)-pp.5809-5816. DOI: 10.4049/jimmunol.175.9.5809.

21.Takada Y. Suberoylanilide Hydroxamic acid potentiates apoptosis, inhibits invasion, and abolishes osteoclastogenesis by suppressing nuclear factor B activation. //J. Biol. Chem. 2005.-Vol. 281 (9) — pp. 5612-5622. DOI: 10.1074/jbc.m507213200.

22.Kim H., Lee J., Jin W., Ko S., Jung K., Ha H., Lee Z. MS-275, a benzamide histone deacetylase inhibitor, prevents osteoclastogenesis by down-regulating c-Fos expression and suppresses bone loss in mice. //Eur. J. Pharmacol. 2022. — Vol. 691 (1-3) — pp. 69-76. DOI:10.1016/j.ejphar.2022.07.034

23.Pratt AJ, MacRae IJ. The RNA-induced silencing complex: a versatile gene-silencing machine. //J Biol. Chem. 2009. — Vol. 284 — pp. 17897-901

24.Lacey D., Boyle W., Simonet W., Kostenuik P., Dougall W., Sullivan J., San Martin J., Dansey R. Bench to bedside: elucidation of the OPG-RANK-RANKL pathway and the development of denosumab. //Nat. Rev. Drug. Discov. 2022. — Vol.11 (5).-pp. 401-419. DOI:10.1038/nrd3705.

25.Monroe D., McGee-Lawrence M., Oursler M., Westendorf J. Update on Wnt signaling in bone cell biology and bone disease. //Gene. 2022. — Vol. 492 (1). -pp. 1-18. DOI: 10.1016/j.gene.2022.10.044.

26.Li X., Ominsky M.S., Warmington K.S., Morony S., Gong J., Cao J., Gao Y., Shalhoub V., Tipton B., Haldankar R., Chen Q., Winters A., Boone T., Geng Z., Niu Q.T., Ke H.Z., Kostenuik P.J., Simonet W.S., Lacey D.L., Paszty C. Sclerostin Antibody treatment increases bone formation, bone mass, and bone

strength in a rat model of postmenopausal osteoporosis. //J. Bone Miner Res. 2009. — Vol. 24 (4). — pp. 578-588. DOI:10.1359/jbmr.081206

27.Centrella M., McCarthy T. Estrogen receptor dependent gene expression by osteoblasts — direct, indirect, circumspect, and speculative effects. //Steroids. 2022. — Vol. 77 (3) — pp.174-184. DOI:10.1016/j.steroids.2022.10.016.

28.Burgers T., Williams B. Regulation of Wnt/p-catenin signaling within and from osteocytes. //Bone. 2022. — Vol.54 (2) — pp. 244-249. DOI: 10.1016/j.bone.2022.02.022.

29.Diarra D., Stolina M., Polzer K., Zwerina J., Ominsky M.S., Dwyer D., Korb A., Smolen J., Hoffmann M., Scheinecker C., van der Heide D., Landewe R., Lacey D., Richards W., Schett G. Dickkopf-1 is a master regulator of joint remodeling. //Nat. Med. 2007. — Vol. 13 (2). — pp. 156-163. DOI: 10.1038/nm1538

30.Semenova E., Filatov M. Genetic and epigenetic markers of gliomas. //Cell. Tiss. Biol. 2022. — Vol. 7 (4) — pp. 303-313. DOI: 10.1134/s1990519x13040123

31.Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. //Cell. 1997. — Vol.89 -pp. 747-54.

32.Cohen MM Jr. Perspectives on RUNX genes: an update. //Am J Me Genet A. 2009. — Vol. 149A. — pp. 629-46. doi: 10.1002/ajmg.a.33021

33.Hassan M., Gordon J., Beloti M., Croce C.M., van Wijnen A.J., Stein J.L., Stein G.S., Lian J.B. A network connecting Runx2, SATB2, and the miR-23a 27a 24-2 cluster regulates the osteoblast differentiation program. //Proc. Natl. Acad. Sci USA. 2022. — Vol.107 (46) — pp. 19879-19884. DOI: 10.1073/pnas.1007698107

34.Wu T., Zhou H., Hong Y., Li J., Jiang X., Huang H. MiR-30 family members negatively regulate osteoblast differentiation. //J. Biol. Chem. 2022. — Vol. 287 (10). — pp. 7503-7511. DOI: 10.1074/jbc.m111.292722

35.Li Z., Hassan M.Q., Volinia S., van Wijnen A.J., Stein J.L., Croce C.M., Lian J.B., Stein G.S. A microRNA signature for a BMP2 induced osteoblast lineage commitment program. //Proc. Natl. Acad. Sci USA. 2008. — Vol.105 (37). — pp. 13906-13911. DOI: 10.1073/pnas.0804438105.

36.Huang J., Zhao L., Xing L., Chen D. MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. //Stem. Cells. 2022. — Vol. 28 (2). — pp. 357-364. DOI:10.1002/stem.288

37.Tomé M., López-Romero P., Albo C., Sepúlveda J.C., Fernández-Gutiérrez B., Dopazo A., Bernad A., González M.A. miR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells. //Cell Death Differ. 2022. — Vol. 18 (6). — pp.985-995. DOI:10.1038/cdd.2022.167

38.Kim E., Kang I., Lee J., Jang W., Koh J. MiR-433 mediates ERRy suppressed osteoblast differentiation via direct targeting to Runx2 mRNA in C3H10T1/2 cells. //Life Sci. 2022. — Vol. 92 (10). — pp. 562-568. DOI:10.1016/j.lfs.2022.01.015

39.Zhang Y., Xie R.L., Croce C.M., Stein J.L., Lian J.B., van Wijnen A.J., Stein

G.S. A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. //Proc. Natl. Acad. Sci USA. 2022. — Vol. 108 (24). — pp. 9863-9868. DOI:10.1073/pnas.1018493108.

40.Li H., Xie H., Liu W., Hu R., Huang B., Tan Y.F., Xu K., Sheng Z.F., Zhou

H.D., Wu X.P., Luo X.H. A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. //J. Clin. Invest. 2009. — Vol. 119 (12). — pp. 3666-3677. DOI: 10.1172/jci39832.

41.Hu R., Liu W., Li H., Yang L., Chen C., Xia Z.Y., Guo L.J., Xie H., Zhou H.D., Wu X.P., Luo X.H. A Runx2/miR-3960/miR-2861 regulatory feedback loop during mouse osteoblast differentiation. //J. Biol. Chem. 2022. — Vol. 286 (14). — pp. 12328-12339. DOI:10.1074/jbc.m110.176099.

42.Yang L., Cheng P., Chen C., He H.B., Xie G.Q., Zhou H.D., Xie H., Wu X.P., Luo X.H. miR-93/Sp7 function loop mediates osteoblast mineralization. //J. Bone Miner. Res. 2022. — Vol. 27 (7). — pp. 1598-1606. DOI: 10.1002/jbmr.1621

43.Kapinas K., Kessler C., Ricks T., Gronowicz G., Delany A. MiR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop. //J. Biol. Chem. 2022. — Vol.285 (33). — pp. 25221-25231. DOI: 10.1074/jbc.m110.116137.

44.Hassan M., Maeda Y., Taipaleenmaki H., Zhang W., Jafferji M., Gordon J.A., Li Z., Croce C.M., van Wijnen A.J., Stein J.L., Stein G.S., Lian J.B. MiR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells. //J. Biol. Chem. 2022. — Vol. 287 (50).

— pp. 42084-42092. DOI:10.1074/jbc.m112.377515.

45.Zhang J., Tu Q., Bonewald L., He X., Stein G., Lian J., Chen J.. Effects of miR-335-5p in modulating osteogenic differentiation by specifically down regulating Wnt antagonist DKK1. //J. Bone Miner. Res. 2022. — Vol. 26 (8). -pp. 1953-1963. DOI: 10.1002/jbmr.377

46.Wang T., Xu Z. MiR-27 promotes osteoblast differentiation by modulating Wnt signaling. //Biochem Biophys Res Commun. 2022. — Vol. 402 (2). — pp. 186-189. DOI:10.1016/j.bbrc.2022.08.031.

47.Hu W., Ye Y., Zhang W., Wang J., Chen A., Guo F. MiR-142 3p promotes osteoblast differentiation by modulating Wnt signaling. //Mol. Med. Rep. 2022.

— Vol. 7 (2). — pp. 689-93. DOI:10.3892/mmr.2022.1207

48.Mizoguchi F., Izu Y., Hayata T., Hemmi H., Nakashima K., Nakamura T., Kato S., Miyasaka N., Ezura Y., Noda M. Osteoclast specific Dicer gene deficiency suppresses osteoclastic bone resorption. //J. Cell Biochem. 2022. Vol. 109(5). — pp. 866-875. DOI:10.1002/jcb.22228.

49.Sugatani T., Hruska K. Impaired Micro-RNA Pathways diminish osteoclast differentiation and function. //J. Biol. Chem. 2008. — Vol. 284 (7). — pp. 46674678. DOI: 10.1074/jbc.m805777200

50.Mann M., Barad O., Agami R., Geiger B., Hornstein E. MiRNA based mechanism for the commitment of multipotent progenitors to a single cellular fate. //Proc. Natl. Acad. Sci USA. 2022. — Vol. 107 (36). — pp. 15804-15809. DOI: 10.1073/pnas.0915022107

51.Wang Y., Li L., Moore B., Peng X.H., Fang X., Lappe J.M., Recker R.R., Xiao P. MiR-133a in human circulating monocytes: a potential biomarker associated with postmenopausal osteoporosis.// PLoS ONE. 2022. — Vol. 7 (4). — P. 34641. DOI: 10.1371/j ournal .pone.0034641.

52.Cheng P., Chen C., He H., Hu R., Zhou H.D., Xie H., Zhu W., Dai R.C., Wu X.P., Liao E.Y., Luo X.H. miR-148 a regulates osteoclastogenesis by targeting V-maf musculoaponeurotic fibrosarcoma oncogene homolog B. //J. Bone Miner Res. 2022. — Vol.28 (5). — pp.1180-1190. DOI:10.1002/jbmr.1845.

53.Lei SF, Papasian CJ, Deng HW. Polymorphisms in predicted miRNA binding sites and osteoporosis. //J Bone Miner Res. 2022. — Vol. 26(1). — p. 72-8. doi: 10.1002/jbmr.186.

54.Liao L, Yang X, Su X, Hu C, Zhu X, Yang N, Chen X, Shi S, Shi S, Jin Y. Redundant miR-3077-5p and miR-705 mediate the shift of mesenchymal stem cell lineage commitment to adipocyte in osteoporosis bone marrow. //Cell Death Dis. 2022. — Vol. 4(4). — e600. doi;10.1038/cddis.2022.130.,

55.Yang N., Wang G., Hu C., Shi Y., Liao L., Shi S., Cai Y., Cheng S., Wang X., Liu Y., Tang L., Ding Y., Jin Y. Tumor necrosis factor a suppresses the mesenchymal stem cell osteogenesis promoter miR-21 in estrogen deficiency induced osteoporosis. //J. Bone Miner. Res. 2022. — Vol. 28 (3). — pp. 559-573. DOI: 10.1002/jbmr.1798

56.Wang X., Guo B., Li Q., Peng J., Yang Z., Wang A., Li D., Hou Z., Lv K., Kan G., Cao H., Wu H., Song J., Pan X., Sun Q., Ling S., Li Y., Zhu M., Zhang P.,

Peng S., Xie X., Tang T., Hong A., Bian Z., Bai Y., Lu A., Li Y., He F., Zhang G., Li Y. MiR-214 targets ATF4 to inhibit bone formation. //Nat. Med. 2022. -Vol. 19 (1). — pp. 93-100. DOI:10.1038/nm.3026.

57.Weber J., Baxter D., Zhang S., Huang D.Y., Huang K.H., Lee M.J., Galas D.J., Wang K. The MicroRNA Spectrum in 12 Body Fluids. //Clin. Chem. 2022. -Vol. 56 (11). — pp. 1733-1741. doi:10.1373/clinchem.2022.147405

58.Gilad S., Meiri E., Yogev Y., Benjamin S., Lebanony D., Yerushalmi N., Benjamin H., Kushnir M., Cholakh H., Melamed N., Bentwich Z., Hod M., Goren Y., Chajut A. Serum MicroRNAs are promising novel biomarkers. //PLoS ONE. 2008. — Vol. 3 (9) — e3148. DOI:10.1371/journal.pone.0003148.

59.Heilmeier U., Hackl M., Skalicky S., Schroeder F., Vierlinger K., Burghardt A., Schwartz A., Grillari J., Link T. Blood circulating miRNAs are indicative of skeletal fractures in postmenopausal women with and without type 2 diabetes and may be promising candidates for general fracture risk prediction. //Paper presented at: 4th Joint meeting of ECTS and IBMS. April 25-28, 2022. -Netherlands,Rotterdam.URL:

http://abstracts.ectsibms2022.org/ectsibms/0001/ectsibms0001OC6.6.htm (Доступно на 17.11.2022) 60.Seeliger C, Karpinski K, Haug A, Vester H, Schmitt A, Bauer J, et al. Five freely circulating miRNAs and bone tissue miRNAs are associated with Osteoporotic fractures. //J Bone Miner Res. 2022.- Vol. 29(8). — pp.1718-28. doi: 10.1002/jbmr.2175

61.Garmilla-Ezquerra P, Sanudo C, Delgado-Calle J, Perez-Nunez MI, Sumillera M, Riancho JA. Analysis of the bone MicroRNome in Osteoporotic fractures. //Calcif Tissue Int. 2022. — Vol. 96(1). — pp. 30-7. Epub 2022 Nov 29. doi: 10.1007/s00223-014-9935-7.

62.Ell B., Mercatali L., Ibrahim T., Campbell N., Schwarzenbach H., Pantel K., Amadori D., Kang Y. Tumor induced osteoclast miRNA changes as regulators

and biomarkers of osteolytic bone metastasis. //Cancer Cell. 2022. Vol. 24 (4).

— pp. 542-556. DOI:10.1016/j.ccr.2022.09.008.

63.Wu K., Song W., Zhao L., Liu M., Yan J., Andersen M., Kjems J., Gao S., Zhang Y. MicroRNA functionalized microporous titanium oxide surface by lyophilization with enhanced osteogenic activity. //ACS Appl. Mater Interfaces. 2022. — Vol. 5 (7). — pp. 2733-2744. DOI:10.1021/am400374c.

64.Wu K., Xu J., Liu M., Song W., Yan J., Gao S., Zhao L., Zhang Y. Induction of osteogenic differentiation of stem cells via a lyophilized microRNA reverse transfection formulation on a tissue culture plate. //Int. J. Nanomedicine. 2022.

— Vol. 8. — e1595. DOI:10.2147/ijn.s43244.

65.Jing D., Hao J., Shen Y., Tang G., Li M.L., Huang S.H., Zhao Z.H. The role of microRNAs in bone remodeling. //Int. J. Oral. Sci. 2022. — Vol. 7. — pp. 131143. DOI:10.1038/ijos.2022.22.

66.Nusse R, Varmus H. Three decades of Wnts: a personal perspective on how a scientific field developed. //EMBO J. 2022. — Vol. 31(12). — pp. 2670-84. doi: 10.1038/emboj.2022.146.

67.De Ferrari GV, Papassotiropoulos A, Biechele T, Wavrant De-Vrieze F, Avila ME, Major MB, Myers A, Saez K, Henriquez JP, Zhao A, Wollmer MA, Nitsch RM, Hock C, Morris CM, Hardy J, Moon RT. Common genetic variation within the low-density lipoprotein receptor-related protein 6 and late-onset Alzheimer’s disease. //Proc Natl Acad Sci U S A. 2007 Epub 2007 May 21. Vol. 104(22). — pp. 9434-9.

68.Polakis P. The many ways of wnt in cancer. //Curr Opin Genet Dev. 2007. Vol. 17(1). — pp. 45-51.

69.Lammi L, Arte S, Somer M, Jarvinen H, Lahermo P, Thesleff I, Pirinen S, Nieminen P. Mutations in AXIN2 cause familial tooth agenesis and redispose to colorectal cancer. //Am J Hum Genet. 2004 — Vol. 74 — pp. 1043-50

70.Morin PJ. beta-catenin signaling and cancer. //Bioessays. 1999. — Vol. 21(12).

— pp. 1021-30.

71.Satoh S, Daigo Y, Furukawa Y, Kato T, Miwa N, Nishiwaki T, Kawasoe T, Ishiguro H, Fujita M, Tokino T, Sasaki Y, Imaoka S, Murata M, Shimano T, Yamaoka Y, Nakamura Y. AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. //Nat Genet. 2000. — Vol. 24 — pp. 245-50

72.Clevers H. Wnt/beta-catenin signaling in development and disease. //Cell. 2006. — Vol. 127(3). — pp. 469-80

73.Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, Wang H, Cundy T, Glorieux FH, Lev D, Zacharin M, Oexle K, Marcelino J, Suwairi W, Heeger S, Sabatakos G, Apte S, Adkins WN, Allgrove J, Arslan-Kirchner M, Batch JA, Beighton P, Black GC, Boles RG, Boon LM, Borrone C, Brunner HG, Carle GF, Dallapiccola B, De Paepe A, Floege B, Halfhide ML, Hall B, Hennekam RC, Hirose T, Jans A, Jüppner H, Kim CA, Keppler-Noreuil K, Kohlschuetter A, LaCombe D, Lambert M, Lemyre E, Letteboer T, Peltonen L, Ramesar RS, Romanengo M, Somer H, Steichen-Gersdorf E, Steinmann B, Sullivan B, Superti-Furga A, Swoboda W, van den Boogaard MJ, Van Hul W, Vikkula M, Votruba M, Zabel B, Garcia T, Baron R, Olsen BR, Warman ML; Osteoporosis-Pseudoglioma Syndrome Collaborative Group. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. //Cell. 2001. — Vol. 107(4). — pp. 513-23

74.Saarinen A, Välimäki VV, Välimäki MJ, Löyttyniemi E, Auro K, Uusen P, Kuris M, Lehesjoki AE, Mäkitie O. The A1330V polymorphism of the low-density lipoprotein receptor-related protein 5 gene (LRP5) associates with low peak bone mass in young healthy men. //Bone. 2007. — Vol. 40(4). — pp. 100612

75.Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA, Wu D, Insogna K, Lifton RP. High bone density due to a mutation in LDL-receptor-related protein 5. //N Engl J Med. 2002. — Vol. 346(20). — pp. 1513-21.

76.Van Wesenbeeck L, Cleiren E, Gram J, Beals RK, Benichou O, Scopelliti D, Key L, Renton T, Bartels C, Gong Y, Warman ML, De Vernejoul MC, Bollerslev J, Van Hul W 2003 Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. //Am J Hum Genet. 2003. — Vol. 72(3). — pp. 763-71

77.Mani A, Radhakrishnan J, Wang H, Mani A, Mani MA, Nelson-Williams C, Carew KS, Mane S, Najmabadi H, Wu D, Lifton RP. LRP6 mutation in a family with early coronary disease and metabolic risk factors. //Science. 2007. — Vol. 315(5816). — pp. 1278-82

78.Balemans W, Ebeling M, Patel N, Van Hul E, Olson P, Dioszegi M, Lacza C, Wuyts W, Van Den Ende J, Willems P, Paes-Alves AF, Hill S, Bueno M, Ramos FJ, Tacconi P, Dikkers FG, Stratakis C, Lindpaintner K, Vickery B, Foernzler D, Van Hul W. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). //Hum Mol Genet. 2001. — Vol. 10(5). — pp. 537-43.

79.Brunkow ME, Gardner JC, Van Ness J, Paeper BW, Kovacevich BR, Proll S, Skonier JE, Zhao L, Sabo PJ, Fu Y, Alisch RS, Gillett L, Colbert T, Tacconi P, Galas D, Hamersma H, Beighton P, Mulligan J. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. //Am J Hum Genet. 2001. — Vol. 68(3). — pp. 577-89

80.Niemann S, Zhao C, Pascu F, Stahl U, Aulepp U, Niswander L, Weber JL, Müller U. Homozygous WNT3 mutation causes tetra-amelia in a large consanguineous family. //Am J Hum Genet. 2004. — Vol. 74(3) — pp. 558-63

81.Uitterlinden AG, Arp PP, Paeper BW, Charmley P, Proll S, Rivadeneira F, Fang Y, van Meurs JB, Britschgi TB, Latham JA, Schatzman RC, Pols HA, Brunkow ME. Polymorphisms in the sclerosteosis/van Buchem disease gene (SOST) region are associated with bone-mineral density in elderly whites. //Am J Hum Genet. 2004. — Vol. 75(6) — pp. 1032-45

82.Day TF, Guo X, Garrett-Beal L, Yang Y. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast an chondrocyte differentiation uring vertebrate skeletogenesis. //Dev Cell. 2005. — Vol. 8(5). — pp. 739-50.

83.Rodda SJ, McMahon AP. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. //Development 2006. — Vol. 133(16). — pp. 3231-44

84.Smolich B.D., mcmahon J.A., mcmahon A.P., Papkoff J. Wnt family proteins are secreted and associated with the cell surface. //Mol Biol Cell 1993. — Vol. 4(12). — pp. 1267-1275

85.Willert K., Brown J.D., Danenberg E., Duncan A.W., Weissman I.L., Reya T., Yates J.R., Nusse R. Wnt proteins are lipid-modified and can act as stem cell growth factors. //Nature 2003. — Vol. 423(6938). — pp. 448-452

86.Almeida M, Han L, Bellido T, Manolagas SC, Kousteni S. Wnt proteins prevent apoptosis of both uncommitted osteoblast progenitors and differentiated osteoblasts by beta-catenin-dependent and independent signaling cascades involving Src/ERK and phosphatidylinositol 3-kinase/AKT. //J Biol Chem. 2005. — Vol. 280(50). — pp. 41342-51

87.Krishnan V, Bryant HU, MacDougald OA. Regulation of bone mass by Wnt signaling. //J Clin. Invest. 2006. — Vol. 116(5). — pp.1202-9.

88.Van Amerongen R, Mikels A, Nusse R. Alternative wnt signaling is initiated by distinct receptors. //Sci Signal. 2008. — Vol. 1(35). — re9. doi: 10.1126/scisignal.135re9

89.Mikels AJ, Nusse R. Purified wnt5a protein activates or inhibits beta-catenin-tcf signaling depending on receptor context. //PLoS Biol. 2006. — Vol.4(4). -e115

90.Slusarski D.C., Corces V.G., moon R.T. Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. //Nature 1997. — Vol. 390(6658). — pp. 410-413

91.Kahn M. Can we safely target the WNT pathway? //Nat Rev Drug Discov. 2022. — Vol. — 13(7). — pp. 513-32. doi: 10.1038/nrd4233

92.Pinzone JJ, Hall BM, Thudi NK, Vonau M, Qiang YW, Rosol TJ, Shaughnessy JD Jr. The role of Dickkopf-1 in bone development, homeostasis, and disease. //Blood. 2009. — Vol. 113(3). — pp. 517-25. doi: 10.1182/blood-2008-03-145169

93.Bodine PV, Stauffer B, Ponce-de-Leon H, Bhat RA, Mangine A, Seestaller-Wehr LM, Moran RA, Billiard J, Fukayama S, Komm BS, Pitts K, Krishnamurthy G, Gopalsamy A, Shi M, Kern JC, Commons TJ, Woodworth RP, Wilson MA, Welmaker GS, Trybulski EJ, Moore WJ. A small molecule inhibitor of the Wnt antagonist secreted frizzled-related protein-1 stimulates bone formation. //Bone. 2009. — Vol. 44(6). — pp.1063-8. doi: 10.1016/j.bone.2009.02.013

94.Witte F, Dokas J, Neuendorf F, Mundlos S, Stricker S. Comprehensive expression analysis of all Wnt genes and their major secreted antagonists during mouse limb development and cartilage differentiation. //Gene Expr Patterns. 2009. — Vol. 9(4). — pp. 215-23. doi: 10.1016/j.gep.2008.12.009

95.Malinauskas T, Aricescu AR, Lu W, Siebold C, Jones EY. Modular mechanism of Wnt signaling inhibition by Wnt inhibitory factor 1. //Nat Struct Mol Biol. 2022. — Vol.18(8). — pp. 886-93. doi: 10.1038/nsmb.2081

96.Krause C, Korchynskyi O, de Rooij K, Weidauer SE, de Gorter DJ, van Bezooijen RL, Hatsell S, Economides AN, Mueller TD, Löwik CW, ten Dijke P. Distinct modes of inhibition by sclerostin on bone morphogenetic protein and Wnt signaling pathways. //J Biol Chem. 2022. — Vol. 285(53). — pp. 41614-26. doi: 10.1074/jbc.M110.153890.

97.van Bezooijen RL, Roelen BA, Visser A, van der Wee-Pals L, de Wilt E, Karperien M, Hamersma H, Papapoulos SE, ten Dijke P, Löwik CW. Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. //J Exp Med. 2004. — Vol.199(6). — pp. 805-14

98.Kneissel M. The promise of sclerostin inhibition for the treatment of osteoporosis. //IBMS BoneKEy. 2009. — Vol. 6 — pp. 259-264

99.Lintern KB, Guidato S, Rowe A, Saldanha JW, Itasaki N. Characterization of wise protein and its molecular mechanism to interact with both Wnt and BMP signals. //J Biol Chem. 2009. — Vol. 284(34). — pp. 23159-68. doi: 10.1074/jbc.M109.025478.

100. Wagner ER, Zhu G, Zhang BQ, Luo Q, Shi Q, Huang E, Gao Y, Gao JL, Kim SH, Rastegar F, Yang K, He BC, Chen L, Zuo GW, Bi Y, Su Y, Luo J, Luo X, Huang J, Deng ZL, Reid RR, Luu HH, Haydon RC, He TC. The therapeutic potential of the Wnt signaling pathway in bone disorders. //Curr Mol Pharmacol. 2022. — Vol. 4(1). — pp. 14-25. doi:10.2174/1874467211104010014.

101. Pai R, Tarnawski AS, Tran T. Deoxycholic acid activates betacatenin signaling pathway and increases colon cell cancer growth and invasiveness. //Mol Biol Cell. 2004. — Vol. 15(5). — pp. 2156-2163.

102. Kubota T, Michigami T, Ozono K. Wnt signaling in bone metabolism. //J Bone Miner Metab. 2009. — Vol. 27(3). — pp. 265-271. doi: 10.1007/s00774-009-0064-8.

103. Piters E, Boudin E, Van Hul W. Wnt signaling: a win for bone. //Arch Biochem Biophys. 2008. — Vol. 473(2). — pp. 112-116. doi: 10.1016/j.abb.2008.03.006

104. Deal C. Potential new drug targets for osteoporosis. //Nat Clin Pract Rheumatol. 2009. — Vol. 5(1). — pp. 20-27. doi: 10.1038/ncprheum0977

105. Kulkarni NH, Onyia JE, Zeng Q, Tian X, Liu M, Halladay DL, Frolik CA, Engler T, Wei T, Kriauciunas A, Martin TJ, Sato M, Bryant HU, Ma YL. Orally bioavailable GSK- 3alpha/beta dual inhibitor increases markers of cellular differentiation in vitro and bone mass in vivo. //J Bone Miner Res. 2006. — Vol. 21(6). — pp. 910-920

106. Vestergaard P, Rejnmark L, Mosekilde L. Reduced relative risk of fractures among users of lithium. //Calcif Tissue Int. 2005. — Vol. -77(1). -pp.1-8.

107. Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. //Nat Med. 2004. — Vol. 10(1). — pp. 55-63

108. Haydon RC, Deyrup A, Ishikawa A, Heck R, Jiang W, Zhou L, Feng T, King D, Cheng H, Breyer B, Peabody T, Simon MA, Montag AG, He TC. Cytoplasmic and/or nuclear accumulation of the beta-catenin protein is a frequent event in human osteosarcoma. //Int J Cancer. 2002. — Vol.102(4). -pp. 338-342.

109. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL, Gotlib J, Li K, Manz MG, Keating A, Sawyers CL, Weissman IL Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. //N Engl J Med. 2004. — Vol. 351(7). — pp. 657-667

110. Luo X, Chen J, Song WX, Tang N, Luo J, Deng ZL, Sharff KA, He G, Bi Y, He BC, Bennett E, Huang J, Kang Q, Jiang W, Su Y, Zhu GH, Yin H, He Y, Wang Y, Souris JS, Chen L, Zuo GW, Montag AG, Reid RR, Haydon RC, Luu HH, He TC. Osteogenic BMPs promote tumor growth of human osteosarcomas that harbor differentiation defects. //Lab Invest. Dec. 2008. -Vol. 88(12). — pp. 1264-1277. doi: 10.1038/labinvest.2008.98.

111. Tang N, Song WX, Luo J, Haydon RC, He TC. Osteosarcoma Development and stem cell differentiation. //Clin Orthop Relat. Rres. 2008. -Vol. 466(9). — pp. 2114-21130. doi: 10.1007/s11999-008-0335-z

112. Sims NA, Chia LY. Regulation of sclerostin expression by paracrine and endocrine factors. //Clin Rev Bone Miner Metab 2022. — Vol.10. — pp. 98-107.

113. Bellido T, Ali AA, Gubrij I, Plotkin LI, Fu Q, O’Brien CA, Manolagas SC, Jilka RL. Chronic elevation of parathyroid hormone in mice reduces

expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. //Endocrinology. 2005. — Vol. 146(11). — pp. 4577-83.

114. Gooi JH, Pompolo S, Karsdal MA, Kulkarni NH, Kalajzic I, McAhren SH, Han B, Onyia JE, Ho PW, Gillespie MT, Walsh NC, Chia LY, Quinn JM, Martin TJ, Sims NA. Calcitonin impairs the anabolic effect of PTH in young rats and stimulates expression of sclerostin by osteocytes. //Bone. 2022. — Vol. 46(6). — pp. 1486-97. doi: 10.1016/j.bone.2022.02.018

115. Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I, Mantila SM, Gluhak-Heinrich J, Bellido TM, Harris SE, Turner CH. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. //J Biol Chem. 2008. — Vol. 283(9). — pp. 5866-75

116. Белая Ж.Е. Ранняя диагностика эндогенного гиперкортицизма. Канонический Wnt сигнальный путь и изменение костного метаболизма при глюкокортикоидном остеопорозе. //Автореф. дис. докт. мед. наук: 14.01.02 / Белая Жанна Евгеньевна. — М., 2022. — 50 с.

117. Silverman SL. Sclerostin. //J Osteoporos. 2022. — pp. 941-419. doi: 10.4061/2022/941419

118. Modder UI, Clowes JA, Hoey K, Peterson JM, McCready L, Oursler MJ, Riggs BL, Khosla S. Regulation of circulating sclerostin levels by sex steroids in women and in men. //J Bone Miner Res. 2022. — Vol. 26(1) — pp. 27-34. doi: 10.1002/jbmr.128

119. Wijenayaka AR, Kogawa M, Lim HP, Bonewald LF, Findlay DM, Atkins GJ. Sclerostin stimulates osteocyte support of osteoclast activity by a RANKL-dependent pathway. //PLoS One. 2022. — Vol. 6(10). doi: 10.1371/journal.pone.0025900.

120. McClung MR, Grauer A, Boonen S, Bolognese MA, Brown JP, Diez-Perez A, Langdahl BL, Reginster JY, Zanchetta JR, Wasserman SM, Katz L, Maddox J, Yang YC, Libanati C, Bone HG Romosozumab in postmenopausal

women with low bone mineral density. //N Engl J Med. 2022. — Vol. 370(5). -pp. 412-20. doi: 10.1056/NEJMoa1305224.

121. Recker R, Benson CT, Matsumoto T, Bolognese MA, Robins DA, Alam J, Chiang AY, Hu L, Krege JH, Sowa H, Mitlak BH, Myers SL. A randomized, double-blind phase 2 clinical trial of blosozumab, a sclerostin antibody, in postmenopausal women with low bone mineral density. //J Bone Miner Res. 2022. — Vol. 30(2). — pp. 216-24. doi: 10.1002/jbmr.2351

122. Cosman F, Crittenden DB, Adachi JD, Binkley N, Czerwinski E, Ferrari S, Hofbauer LC, Lau E, Lewiecki EM, Miyauchi A, Zerbini CA, Milmont CE, Chen L, Maddox J, Meisner PD, Libanati C, Grauer A. Romosozumab treatment in postmenopausal women with osteoporosis. //N Engl J Med. 2022.

— Vol. 375(16). — pp. 1532-1543.

123. Saag KG, Petersen J, Brandi ML, Karaplis AC, Lorentzon M, Thomas T, Maddox J, Fan M, Meisner PD, Grauer A. Romosozumab or alendronate for fracture prevention in women with osteoporosis. //N Engl J Med. 2022. — Vol.

— 377(15) — pp. 1417-1427. doi: 10.1056/NEJMoa1708322.

124. Kanis JA, Johansson H, Oden A, et al. Perspecives on glucocorticoid-induced osteoporosis. //J Bone Miner Res. 2004. — Vol. 19(6). — pp. 893-9. DOI: 10.13 59/JBMR.040134

125. Belaya ZE, Hans D, Rozhinskaya LY, et al. The risk factors for fractures and trabecular bone score value in patients with endogenous Cushing’s syndrome. //Arch Osteoporos. 2022. — doi: 10.1007/s11657-015-0244-1

126. Canalis E, Mazziotti G, Giustina A, Bilezikian JP. Glucocorticoid-induced osteoporosis: pathophysiology and therapy. //Osteoporos Int 2007. -Vol. 18. — pp. 1319-1328

127. Yao W, Cheng Z, Busse C, Pham A, Nakamura MC, Lane NE. Glucocorticoid excess in mice results in early activation of osteoclastogenesis and adipogenesis and prolonged suppression of osteogenesis: a longitudinal

study of gene expression in bone tissue from glucocorticoid-treated mice. //Arthritis Rheum 2008. — Vol. 58. — pp. 1674-1686

128. Zhang Z, Ren H, Shen G, et al. Animal models for glucocorticoid-induced postmenopausal osteoporosis: an updated review. //Biomed Pharmacother. 2022. — Vol.84. — pp. 438-446. doi: 10.1016/j.biopha.2022.09.045

129. Nieman LK, Biller BMK, Finding JW, Newell-Price J, Savage MO, Stewart PM, Montori VM (2008) The diagnosis of Cushing’s syndrome: an Endocrine Society clinical practice guideline. //J. Clin Endocrinol Metab. 2008. — Vol. 93. — pp. 1526-1540

130. Wang F-S, Ko J-Y, Yeh D-W, Ke H-C, Wu H-L. Modulation of dickkopf-1 attenuates glucocorticoid induction of osteoblast apoptosis, adipocytic differentiation and bone mass loss. // Endocrinology. — 2008. -Vol.149. — pp. 1793-1801

131. Wang F-S, Lin C-L, Chen Y-J, Wang C-J, Yang KD, Huang Y-T, Sun Y-C, Huang H-C. Secreted frizzled-related protein 1 modulates glucocorticoid attenuation of osteogenic activities and bone mass. //J. Endocrinology. — 2005. — Vol.146. — pp. 2415-2423

132. Ohnaka K , Taniguchi H , Kawate H , Nawata H , Takayanagi R . Glucocor — ticoid enhances the expression of dickkopf-1 in human osteoblasts: novel mechanism of glucocorticoid-induced osteoporosis. //Biochem Biophys Res Commun 2004. — Vol. — 318. — pp. 259-264

133. Hurson CJ , Butler JS , Keating DT , Murray DW , Sadlier D M , O’Byrne JM , Doran PP . Gene expression analysis in human osteoblasts exposed to dexamethasone identifies altered developmental pathways as puta -tive drivers of osteoporosis. //BMC Musculoskelet Disord 2007. — Vol. 8. -p.12

134. Gifre L , Ruiz-Gaspa S , Monegal A , Nomdedeu B , Filella X , Guanabens N , Peris P . Effect of glucocorticoid treatment on Wnt signalling

antago — nists (sclerostin and Dkk-1) and their relationship with bone turnover. //Bone 2022. — Vol. 57. — pp. 272-276

135. Wang FS , Chuang PC , Lin CL , Chen MW , Ke HJ , Chang YH , Chen YS , Wu SL , Ko JY . MicroRNA-29a protects against glucocorticoid-induced bone loss and fragility in rats by orchestrating bone acquisition and resorption. //Arthritis Rheum 2022. — Vol.65. — pp. 1530-1540

136. Ko JY , Chuang PC , Chen MW , Ke HC , Wu SL , Chang YH , Chen YS , Wang FS . MicroRNA-29a ameliorates glucocorticoid-induced suppres -sion of osteoblast differentiation by regulating beta-catenin acetylation. //Bone 2022. — Vol. 57. — pp. 468-475

137. Kang H , Chen H , Huang P , Qi J , Qian N , Deng L , Guo L . Glucocorti coids impair bone formation of bone marrow stromal stem cells by reciprocally regulating microRNA-34a-5p. //Osteoporos Int 2022. — Vol. 27. -pp. 1493-1505 . doi: 10.1007/s00198-015-3381-x.

138. Hirayama T , Sabokbar A , Athanasou NA . Effect of corticosteroids on human osteoclast formation and activity. //J Endocrinol 2002. — Vol.175. — pp. 155-163

139. Sivagurunathan S , Muir MM , Brennan TC , Seale JP , Mason RS . Influence of glucocorticoids on human osteoclast generation and activity. //J Bone Miner Res 2005. — Vol. 20. — pp. 390-398

140. Shi J , Wang L , Zhang H , Jie Q , Li X , Shi Q , Huang Q , Gao B, Han Y , Guo K , Liu J , Yang L , Luo Z . Glucocorticoids: Dose-related effects on osteoclast formation and function via reactive oxygen species and autophagy. //Bone 2022. — Vol. 79. — pp. 222-232

141. Hofbauer LC , Gori F , Riggs BL , Lacey DL , Dunstan CR , Spelsberg TC , Khosla S . Stimulation of osteoprotegerin ligand and inhibition of oste -oprotegerin production by glucocorticoids in human osteoblastic line — age cells: potential paracrine mechanisms of glucocorticoid-induced osteoporosis. //Endocrinology 1999. — Vol.140. — pp. 4382-4389

142. Humphrey EL , Williams JH , Davie MW , Marshall MJ . Effects of dissoci — ated glucocorticoids on OPG and RANKL in osteoblastic cells. //Bone 2006. — Vol. 38. — pp. 652-661

143. Kondo T, Kitazawa R , Yamaguchi A , Kitazawa S . Dexamethasone pro

— motes osteoclastogenesis by inhibiting osteoprotegerin through mul — tiple levels. //J Cell Biochem 2008. — Vol. 103. — pp. 335-345

144. Sato AY , Cregor M , Delgado-Calle J , Condon KW , Allen MR , Peacock M , Plotkin LI , Bellido T . Protection from Glucocorticoid-Induced Osteo — porosis by Anti-Catabolic Signaling in the Absence of Sost/Sclerostin. //J Bone Miner Res. 2022. doi:10.1002/jbmr.2869

145. Weinstein RS , Chen JR , Powers CC , Stewart SA , Landes RD , Bellido T , Jilka RL , Parfitt AM , Manolagas SC . Promotion of osteoclast survival and antagonism of bisphosphonate-induced osteoclast apoptosis by glucocorticoids. //J Clin Invest 2002. — Vol.109. — pp. 1041-1048

146. Lian K, Lang TF, Keyak JH, Modin GW, Rehman Q, Do L, Lane NE. Differences in hip quantitative computed tomography (QCT) measurements of bone mineral density and bone strength between glucocorticoid-treated and glucocorticoid-naive postmenopausal women. // J. Osteoporosis International.

— 2005. — Vol. 16. — pp. 642-650

147. Soe K , Delaisse JM . Glucocorticoids maintain human osteoclasts in the active mode of their resorption cycle. //J Bone Miner Res 2022. — Vol. 25. -pp. 2184-2192

148. Tritos NA, Klibanski A. Effects of Growth Hormone on Bone. //Prog Mol Biol Transl Sci. 2022. — Vol. 138. — pp. 193-211. doi: 10.1016/bs.pmbts.2022.10.008

149. Mazziotti G, Chiavistelli S & Giustina A. Pituitary Diseases and Bone. //Endocrinol Metab Clin North Am; 2022. — Vol. 44. — pp. 1718-180

150. Pereira RC, Delany AM & Canalis E. Effects of cortisol and bone morphogenetic protein8 2 on stromal cell differentiation: correlation with

CCAAT8enhancer binding protein expression. //Bone 2002. — Vol. 30 — pp. 6858-691

151. Samelson EJ, Hannan MT, Zhang Y, et al. Incidence and risk factors for vertebral fracture in womenand men: 25-year follow-up results from thepopulation-based Framingham study. //J Bone Miner Res 2006. — Vol. 21. -pp.1207-1214 DOI: 10.1359/jbmr.060513

152. Tamada D, Kitamura T, Onodera T, et al. Rapid decline in bone turnover markers but not bone mineral density in acromegalic patients after transsphenoidal surgery. //Endocr J 2022. — Vol. 61. — pp. 231-237.

153. Giustina A, Mazziotti G & Canalis E. Growth hormone, insulin8like growth factors, and the skeleton. //Endocr. Rev. 2008. — Vol. 29 — pp. 5358559

154. Kaji H, Sugimoto T, Nakaoka D, et al. Bone metabolism and body composition in Japanese patients with active acromegaly. //Clin Endocrinol (Oxf). 2001. — Vol. 55. — pp. 175-181

155. Ezzat S, Melmed S, Endres D, et al. Biochemical assessment of bone formation and resorption in acromegaly. //J Clin Endocrinol Metab. 1993. -Vol.76. — pp.1452-1457 DOI: 10.1210/jcem.76.6.8501150

156. Kayath MJ, Vieira JG. Osteopenia occurs in a minority of patients with acromegaly and is predominant in the spine. //Osteoporos Int. 1997. — Vol. 7. -pp.226-230

157. Потешкин Ю., Пронин В.С., Мельниченко Г.А., и др. Влияние избытка гормона роста и ИРФ-1 на костно-суставную систему при акромегалии. // Актуальная эндокринология. 2022. — №10. — С. 2.

158. Мельниченко Г.А., Дедов И.И., Белая Ж.Е., и др. Болезнь Иценко— Кушинга: клиника, диагностика, дифференциальная диагностика, методы лечения. // Проблемы эндокринологии. 2022; 61(2):55-77. [Melnichenko GA, Dedov II, Belaya ZhE. Cushing’s disease: the clinical features, diagnostics, differential diagnostics, and methods of treatment. //Problems of

Endocrinology. 2022. — Vol. 61(2). — pp. 55-77. In Russ] doi: 10.14341/probl202261255-77

159. Дедов И.И., Молитвословова Н.Н., Рожинская Л.Я., Мельниченко Г.А. Федеральные клинические рекомендации по клинике, диагностике, дифференциальной диагностике, и методам лечения акромегалии. // Проблемы эндокринологии. 2022. Т. 59. № 6. С. 4-18.

160. Genant HK, Wu CY, van Kujik C, Nevitt MC. Vertebral fracture assessment using a semiquantative technique. // J. Bone Miner Res. — 1993. -Vol. 8. — pp. 1137-1148

161. Reiner A, Yekutieli D, Benjamini Y. (2003) Identifying differently expressed genes using false discovery rate controlling procedures. //Bioinformatics. 2003. — Vol. 19. — pp. 368-375

162. Hirakawa A, Sato Y, Sozu T, Hamada C, Yoshimura I. (2008) Estimating the false discovery rate using mixed normal distribution for identifying differentially expressed genes in microarray data analysis. //Cancer Inform. 2008. — Vol. 22 — pp. 140-148

163. Baron R, Kneissel M. (2022) Wnt signaling in bone homeostasis and disease: from human mutations to treatments. //Nat Med. 2022. — P. 179-192

164. Belaya ZE, Iljin AV, Melnichenko GA, Solodovnikov AG, Rozhinskaya LY, Dzeranova LK, Dedov II. Diagnostic performance of osteocalcin measurements in patients with endogenous Cushing’s syndrome. //Bonekey Rep.2022. — P. 155 — 815 doi: 10.1038/bonekey.2022.42. eCollection

165. Komori T. Glucocorticoid signaling and bone biology. //Horm Metab Res. 2022. — Vol. 48. — pp. 755-763

166. Драгунова Н.В. Состояние костно-мышечной системы и возможности реабилитации пациентов с эндогенным гиперкортицизмом. // дис. канд. мед. наук: 14.01.02 — М., 2022 — 116 с.

167. Белая Ж.Е. Ранняя диагностика эндогенного гиперкортицизма. Канонический Wnt сигнальный путь и изменение костного метаболизма

при глюкокортикоидном остеопорозе. //дис. докт. мед. наук: 14.01.02 -М., 2022 — 293 с.

168. Ji X, Chen X, Yu X. MicroRNAs in osteoclastogenesis and function: potential therapeutic targets for osteoporosis. //International J Molecular Sciences. 2022. — Vol.17 — p. 349

169. Рожинская Л.Я. Остеопенический синдром при заболеваниях эндокринной системы и постменопаузальный остеопороз: патогенетические аспекты, диагностика и лечение. //дис. докт. мед. наук: 14.01.02 — М., 2002 — 318 с.

170. Yoshitake F, Itoh S, Narita H, Ishihara K, Ebisu S. Interleukin-6 directly inhibits osteoclasts differentiation by suppressing receptor activator of NF-kB signaling pathway. //Journal of Biological Chemistry. 2008. Vol. 283. -pp. 11535-11540

171. Huang W, Yang S, Shao J, Li Y. Signaling and transcriptional regulation in osteoblast commitment and differentiation. //Front Biosci. 2022. — Vol. 12. -pp. 3068-3092

172. Lian JB, Stein GS, van Wijnen AJ, Stein JL, Hassan MQ, Gaur T, Zhang Y. MicroRNA control of bone formation and homeostasis. //Nat. Rev Endocrinol. 2022. — Vol. 8. — pp. 212-227

173. Chen S, Yang L, Jie Q, Lin Y-S, Meng G-L, Fan J-Z, Zhang J-K, Fan J, Luo Z-J, Liu J. MicroRNA-125b suppresses the proliferation and osteogenic differentiation of human bone morrow-derived mesenchymal stem cells. //Molecular Medicine Reports. 2022. — Vol. 9. — pp. 1820-1826

174. Li CJ, Cheng P, Liang MK, Chen YS, Lu Q, Wang JY, Xia ZY, Zhou HD, Cao X, Xie H, Liao EY, Luo XH. MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. //J Clin Invest. 2022. Vol. 125. — pp. 1509-1522

175. Mizuno Y1, Yagi K, Tokuzawa Y, Kanesaki-Yatsuka Y, Suda T, Katagiri T, Fukuda T, Maruyama M, Okuda A, Amemiya T, Kondoh Y,

Tashiro H, Okazaki Y. miR-125b inhibits osteoblastic differentiation by downregulation of cell proliferation. //Biochem Biophys Res Commun. 2008. -Vol. 368(2). — pp. 267-272

176. Zhang WB, Zhong WJ, Wang L. A signal-amplification circuit between miR-218 and Wnt/p-catenin signal promotes human adipose tissue-derived stem cells osteogenic differentiation. //Bone. 2022. — Vol. 58. — pp. 59-66

177. Shi C, Huang P, Kang H, Hu B, Qi J, Jiang M, Zhou H, Guo L, Deng L. Glucocorticoid inhibits cell proliferation in differentiating osteoblasts by microRNA-199a targeting of Wnt signaling. //J. Mol. Endocrinol. 2022. — Vol. 54. — pp. 325-337

178. Lin EA, Kong L, Bai XH, Luan Y, Liu CJ. miR-199a, a bone morphogenic protein 2-responsive microRNA regulates chondrogenesis via direct targeting to Smad1. //J. Biol Chem. 2009. — Vol. 284. — pp. 11326-11335

179. De-Ugarte L, Yoskovitz G, Balcells S, Guerri-Fernandez R, Martinez-Diaz S, Mellibovsky L, Urreizti R, Nogues X, Grinberg D, Garcia-Giralt N, Diez-Perez A. MiRNA profiling of whole trabecular bone: identification of osteoporosis-related changes in MiRNAs in human hip bones. //BMC Med Genomics. 2022. — Vol. 8. — p. 75. doi: 10.1186/s12920-015-0149-2.

180. Jin Y, Chen X, Gao ZY, Liu K, Hou Y, Zheng J. The role of miR-320a and IL-1P in human chondrocyte degradation. //Bone Joint Res. 2022. — Vol. 6. — pp. 196-203

181. Mizuno Y, Tokuzawa Y, Ninomiya Y, Yagi K, Yatsuka-Kanesaki Y, Suda T, Fukuda T, Katagiri T, Kondoh Y, Amemiya T, Tashiro H, Okazaki Y. miR-210 promotes osteoblastic differentiation through inhibition of AcvR1b. //FEBS Lett. 2009. — Vol. 20583. — pp. 2263-2268

182. Mizoguchi F, Murakami Y, Saito T, Miyasaka N, Kohsaka H. miR-31 controls osteoclast formation and bone resorption by targeting RhoA. //Arthritis Res Ther. 2022. — Vol. 15. — p.102

183. Wang B, Yu P, Li T, Bian Y, Weng X. MicroRNA expression in bone marrow mesenchymal stem cells from mice with steroid-induced osteonecrosis

of the femoral head. //Molecular Medicine Reports. 2022. — Vol. 12. — pp. 7447-7454

184. Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA. MicroRNAs in body fluids—the mix of hormones and biomarkers. //Nat Rev Clin Oncol. 2022 Jun 7. — Vol. 8(8). — pp. 467-77. doi: 10.1038/nrclinonc.2022.76.

185. Heilmeier U, Hackl M, Skalicky S. Serum microRNAs Are Indicative of Skeletal Fractures in Postmenopausal Women with and without Type 2 Diabetes and Influence Osteogenic and Adipogenic Differentiation of Adipose-Tissue Derived Mesenchymal Stem Cells In Vitro. //J. Bone Miner. Res. 2022. doi: 10.1002/jbmr.2897

186. Fujie A, Funayama A, Miyauchi Y, et al. Bcl6 promotes osteoblastogenesis through Stat1 inhibition. //Biochem Biophys Res Commun. 2022 Feb 13. — Vol. 457(3). — pp. 451-6. doi: 10.1016/j.bbrc.2022.01.012.

187. Jizhou Yang Shaojie Wang Fengxian Wang Downregulation of miR-10b promotes osteoblast differentiation through targeting Bcl6. //Int J Mol Med. 2022 Jun. — Vol. 39(6). — pp. 1605-1612. doi: 10.3892/ijmm.2022.2955.

188. Yang M, Pan Y, Zhou Y. miR-96 promotes osteogenic differentiation by suppressing HBEGF-EGFR signaling in osteoblastic cells. //FEBS Lett. 2022. — Vol. 588(24). — pp. 4761-8. doi: 10.1016/j.febslet.2022.11.008

189. Huang S1, Wang S, Bian C, Yang Z, Zhou H, Zeng Y, Li H, Han Q, Zhao RC. Upregulation of miR-22 promotes osteogenic differentiation and inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by repressing HDAC6 protein expression. //Stem Cells Dev. 2022 Sep 1. — Vol. 21(13). — pp. 2531-40. doi: 10.1089/scd.2022.0014.

190. You L, Pan L, Chen L, Gu W, Chen J. miR—27a is essential for the shift from osteogenic differentiation to adipogenic differentiation of mesenchymal stem cells in postmenopausal osteoporosis. //Cell Physiol Biochem 2022. -Vol. 39(1). — pp. 253-265 DOI: 10.1159/000445621

191. Gu C, Xu Y, Zhang S, Guan H, Song S, Wang X, Wang Y, Li Y, Zhao G. miR—27a attenuates adipogenesis and promotes osteogenesis in steroid-induced rat BMSCs by targeting PPAR and GREM1. //Scientific Reports 2022.

— Vol. 6 — e38491 DOI: 10.1038/srep38491

192. Guo D, Li Q, lv Q, Wei Q, Cao S, Gu J. miR—27a targets sFRP1 in hFOB1 cells to regulate proliferation, apoptosis and differentiation. //PLOS ONE 2022. — Vol. 9. — e91354 DOI: 10.1371/journal.pone.0091354

193. Hughes DE, Salter DM, Simpson R. CD44 expression in human bone: a novel marker of osteocytic differentiation. //J Bone Miner Res 1994. — Vol. 9.

— pp. 39-44 DOI: 10.1002/jbmr.5650090106

194. Dou C, Zhang C, Kang F, et al. MiR-7b directly targets DC-STAMP causing suppression of NFATc1 and c-Fos signaling during osteoclast fusion and differentiation. //Biochim Biophys Acta. 2022. — Vol.1839(11). — pp.108496. doi: 10.1016/j.bbagrm.2022.08.002.

195. Yagi M1, Miyamoto T, Sawatani Y, et al. DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. //J Exp Med. 2005.

— Vol. 202(3). — pp. 345-51. DOI:10.1084/jem.20050645

196. Kocijan R, Muschitz C, Geiger E, Skalicky S, Baierl A, Dormann R, Plachel F, Feichtinger X, Heimel P, Fahrleitner-Pammer A, Grillari J, Redl H, Resch H, Hackl M. Circulating microRNA Signatures in Patients With Idiopathic and Postmenopausal Osteoporosis and Fragility Fractures. //J Clin Endocrinol Metab. 2022. — Vol. 101(11). — pp. 4125-4134. DOI: 10.1210/jc.2022-2365

197. Белая Ж.Е., Рожинская Л.Я., Драгунова Н.В., Солодовников А.Г., Ильин А.В., Мельниченко Г.А., Дедов И.И. Сывороточные концентрации

белков регуляторов остеобластогенеза и остеокластогенеза у пациентов с эндогенным гиперкортицизмом. //Остеопороз и остеопатии. 2022. № 2. С. 3-8.

198. Constantinou T, Baumann F, Lacher MD, et al. SFRP-4 abrogates Wnt-3a-induced ß-catenin and Akt/PKB signalling and reverses a Wnt-3a-imposed inhibition of in vitro mammary differentiation. //J Mol Signal. 2008. — Vol. 3(10).doi: 10.1186/1750-2187-3-10.

199. Rozhinskaya Grebennikova T.A., Belaya Zh.E., Rozhinskaya L.Ya., Melnichenko G.A.The canonical Wnt/ß-catenin pathway: From the history of its discovery to clinical application. //Ter Arkh 2022. — Vol. 88. — pp. 74-81 doi: 10.17116/terarkh202288674-81.

200. Zeadin M.G., Butcher M.K., Shaughnessy S.G., Werstuck G.H. Leptin promotes osteoblast differentiation and mineralization of primary cultures of vascular smooth muscle cells by inhibiting glycogen synthase kinase (GSK)-3ß. //Biochem. Biophys. Res. Commun. 2022. — Vol. 425. — pp. 924-930

201. Hofbauer LC, Hamann C, Ebelling P. Approach to the patient with secondary osteoporosis. //Eur J Endocrinol. 2022 Jun. — Vol. 162(6). — pp. 1009-20. doi: 10.1530/EJE-10-0015.

202. Fogelman et al. (eds.), Radionuclide and Hybrid Bone Imaging. //Springer-Verlag Berlin Heidelberg 2022. -Vol.45(5).-pp.347-72. DOI 10.1007/978-3-642-02400-92

203. Camacho PM, Petak SM, Binkley N, Clarke BL, Harris ST, Hurley DL, Kleerekoper M, Lewiecki EM, Miller PD, Narula HS, Pessah-Pollack R, Tangpricha V,Wimalawansa SJ, Watts NB. American association of clinical endocrinologists and American college of endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis. //Endocr Pract.-2022- Vol. 22 (Suppl 4)- pp.1-42 doi: 10.4158/EP161435.GL.

204. Weiner JA, Jontes JD Protocadherins, not prototypical: a complex tale of their interactions, expression, and functions. //Frontiers in Molecular Neuroscience 2022-Vol. 6 -article 4. DOI: 10.3389/fnmol.2022.00004

205. Retting KN, Song B, Yoon BS, Lyons KM. BMP canonical Smad signaling through Smadl and Smad5 is required for endochondral bone formation. Development 2009. — Vol. 136. — pp. 1093-1104 DOI: 10.1242/dev.029926

206. Kapinas K, Kessler CB, Delany AM. miR-29 suppression of osteonectin in osteoblasts: regulation during differentiation and by canonical Wnt signaling. J. Cell Biochem 2009. -Vol. 108(1). — pp. 216-224 DOI: 10.1002/jcb.22243

207. Weilner S, Skalicky S, Salzer B, Keider V, Wagner M, Hildner F, Gabriel C, Dovjak P, Pietschmann P, Grillari-Voglauer R, Grillari J, Hackl M. Differentially circulating miRNAs after recent osteoporotic fractures can influence osteogenic differentiation. Bone 2022. — Vol.79. — pp. 43-51 DOI: 10.1016/j.bone.2022.05.027

208. Chen J, Li K, Pang Q, Yang C, Zhang H, Wu F, Cao H, Liu H, Wan Y, Xia W, Wang J, Dai Z, Li Y. Identification of suitable reference gene and biomarkers of serum miRNAs for osteoporosis. Scientific Reports 2022. — Vol. 6. — e.36347 DOI: 10.1038/srep36347

209. Delic S, Lottman N, Stelzl A, Liesenberg F, Wolter M, Gotze S, et.al. miR-328 promotes glioma cell invasion via SFRP-1 dependent Wnt-signaling activation. Neuro Oncol 2022. — Vol. 16. — pp. 179-190 DOI: 10.1093/neuonc/not164

210. Trohatou O, Zagoura D, Bitsika V, Pappa KI, Antsakis A, Anagnou NP, et.al. Sox2 suppression by miR—21 governs human mesenchymal stem cells properties. Stem Cells Transl Med 2022. — Vol. 3. — pp. 54-68 DOI: 10.5966/sctm.2022-0081

211. Xie Q, Wang Z, Bi X, Zhou H, Wang Y, Gu P, Fan X. Effects of miR-31 on the osteogenesis of human mesenchymal stem cells. Biochem Biophys Res Commun 2022. — Vol. 446 (1). — pp. 98-104 DOI: 10.1016/j.bbrc.2022.02.058

212. Deng Y, Wu S, Zhou H, Wang Y, Hu Y, Gu P, Fan X. Effects of a miR-31, Runx2, and Satb2 regulatory loop on the osteogenic differentiation of bone mesenchymal stem cells. Stem Cells Dev. 2022. — Vol. 22. — pp.2278-2286 DOI: 10.1089/scd.2022.0686

213. Sang Y, Zang W, Yan Y, Liu Y, Fu Q, Wang K, Chen Y, Qi N. Study of differential effects of TGF-beta3/BMP2 on chondrogenesis in MSC cells by gene microarray data analysis. Mol Cell Biochem 2022. — Vol. 385. — pp. 191198 DOI: 10.1007/s11010-013-1827-z

214. Xia Z, Ma P, Wu N, Su X, Chen J, Jiang C, Liu S, Chen W, Ma B, Yang X, Ma Y, Weng X, Qiu G, Huang S, Wu Z. Altered function in cartilage derived mesenchymal stem cell leads to OA-related cartilage erosion. Am J Transl Res 2022. — Vol. 8(2). — pp. 433-446

215. Kopanska M, Szala D, Czech J, Gablo N, Gargasz K, Trzeciak M, Zawlik I, Snela S. MiRNA expression in the cartilage of patients with osteoarthritis. J. Orthopedic Surgery and Research 2022. — Vol. 12. — p. 51 DOI: 10.1186/s13018-017-0542-y

216. Song J, Kim D, Chun C-H, Jin E-J. MicroRNA-9 regulates survival of chondroblasts and cartilage integrity by targeting protogenin. Cell Commun Signal 2022. — Vol. 11. — pp. 11-66 DOI: 10.1186/1478-811X-11-66

217. Gu R, Liu N, Luo S, Huang W, Zha Z, Yang J. MicroRNA-9 regulates the development of knee osteoarthritis through the NF-kappab1 pathway in chondrocytes. Medicine 2022.-Vol.95. — e4315 DOI: 10.1097/MD.0000000000004315

218. Zhao H, Zhang J, Shao H, Liu J, Jin M, Chen J, Huang Y. Transforming Growth Factor P1/Smad4 Signaling Affects Osteoclast Differentiation via

Regulation of miR-155 Expression. Mol Cells. 2022. — Vol. 40(3). — pp. 211221. doi: 10.14348/molcells.2022.2303.

219. Yang Y, Shen Z, Sun W, Gao S, Li Y, Guo Y. The role of miR-122-5p in negatively regulating T-box brain 1 expression on the differentiation of mouse bone mesenchymal stem cells. Neuroreport. 2022 May 3. — Vol. 28(7). — pp367-374. doi: 10.1097/WNR.0000000000000752

220. Fu HL, Pan HX, Zhao B, et al. MicroRNA-100 inhibits bone morphogenetic protein-induced osteoblast differentiation by targeting Smad1. Eur Rev Med Pharmacol Sci. 2022. — Vol. 20(18). — pp. 3911-3919

221. Li S, Hu C, Li J, Liu L, Jing W, Tang W, Tian W, Long J. Effect of miR-26a-5p on the Wnt/Ca(2 ) Pathway and Osteogenic Differentiation of Mouse Adipose-Derived Mesenchymal Stem Cells. Calcif Tissue Int. 2022 Aug. -Vol. 99(2) — pp. 174-86. doi: 10.1007/s00223-016-0137-3

222. Guo Y, Wang Y, Liu Y, Liu Y, Zeng Q, Zhao Y, Zhang X, Zhang X. MicroRNA-218, microRNA-191*, microRNA-3070a and microRNA-33 are responsive to mechanical strain exerted on osteoblastic cells. Mol Med Rep. 2022. — Vol.12(2) — pp. 3033-8. doi: 10.3892/mmr.2022.3705.

223. Holick MF. Vitamin D status: measurement, interpretation and clinical application. Ann Epidemiol. 2009 Feb. — Vol. 19(2). — pp.73-8. doi: 10.1016/j.annepidem.2007.12.001.

224. P Papaioannou G, Mirzamohammadi F, Kobayashi T. MicroRNAs involved in bone formation. Cell Mol Life Sci. 2022 Dec. — Vol. 71(24).-Pp.4747-61. doi: 10.1007/s00018-014-1700-6.

225. Roforth MM, Fujita K, McGregor UI, Kirmani S, McCready LK, Peterson JM, Drake MT, Monroe DG, Khosla S. Effects of age on bone mRNA levels of sclerostin and other genes relevant to bone metabolism in humans. Bone. 2022 Feb. — Vol.59. — pp.1-6. doi: 10.1016/j.bone.2022.10.019.

ПРИЛОЖЕНИЯ

Приложение А. Информация об использованных реактивах для измерения экспрессии матричных РНК и микроРНК (справочное)

Таблица А.1 -Список исследованных мРНК и каталожные номера использованных реактивов

мРНК Идентификатор гена, каталожный номер реактива Thermo Fisher Scientific

ACP5 54, Hs00356261_m1

ALPL 249, Hs01029144_m1

BGLAP 632, Hs01587814_g1

BMP2 650, Hs00154192_m1

BMP7 655, Hs00233476_m1

CA2 760, Hs01070108_m1

CD40 958, Hs01002913_g1

CLCN7 1186, Hs01126462_m1

COL1A1 1277, Hs00164004_m1

COL1A2 1278, Hs00164099_m1

DKK1 22943, Hs00183740_m1

FGFR1 2260, Hs00915142_m1

FGFR2 2263, Hs01552926_m1

GHRH 2691, Hs00184139_m1

IGF1 3479, Hs01547656_m1

IGFBP2 3485, Hs01040719_m1

IL15 3600, Hs01003716_m1

IL6 3569, Hs00985639_m1

IL6R 3570, Hs01075666_m1

мРНК Идентификатор гена, каталожный номер реактива Thermo Fisher Scientific

ITGA1 3672, Hs00235006_m1

ITGB3 3690, Hs01001469_m1

LEP 3952, Hs00174877_m1

LRP1 4035, Hs00233856_m1

LRP5 4041, Hs00182031_m1

LRP6 4040, Hs00233945_m1

LTA 4049, Hs04188773_g1

MAB21L2 10586, Hs01040900_s1

MMP2 4313, Hs01548727_m1

PCDHA6 56142, Hs00258927_s1

RUNX2 860, Hs01047973_m1

SFRP1 6422, Hs00610060_m1

SFRP4 6424, Hs00180066_m1

SOST 50964, Hs00228830_m1

SPP1 6696, Hs00959010_m1

STAT1 6772, Hs01013996_m1

TGFB1 7040, Hs00998133_m1

TIMP2 7077, Hs00234278_m1

TNFRSF11A 8792, Hs00921372_m1

TNFRSF11B 4982, Hs00900358_m1

TNFSF11 8600, Hs00243522_m1

TWIST1 7291, Hs01675818_s1

VEGFA 7422, Hs00900055_m1

WNT10B 7480, Hs00559664_m1

WNT3A 89780, Hs00263977_m1

Таблица А.2 — Список исследованных мкРНК и каталожные номера использованных реактивов

мкРНК Каталожный номер реактива Thermo Fisher Scientific

мкРНК-29а-3р 478587_mir

мкРНК-29Ь-3р 478369_mir

мкРНК-29с-3р 479229_mir

мкРНК-133а-3р 478511_mir

мкРНК-199а-5р 478231_mir

мкРНК-204-5р 478491_mir

мкРНК-191-5р 477952_mir

мкРНК-218-5р 477977_mir

мкРНК-21-5р 477975_mir

мкРНК-210-5р 478765_mir

мкРНК-135а-5р 478581_mir

мкРНК-155-5р 477927_mir

мкРНК-122-5р 477855_mir

мкРНК-125Ь-5р 477885_mir

мкРНК-9-5р 478214_mir

мкРНК-31-5р 478015_mir

мкРНК-34а-5р 478048_mir

мкРНК-7Ь-5р 478580_mir

мкРНК-10Ь-5р 478494_mir

мкРНК-22-3р 477985_mir

мкРНК-328-3р 478028_mir

мкРНК-100-5р 478224_mir

мкРНК-148а-3р 477814_mir

мкРНК-550а-5р 479032_mir

мкРНК Каталожный номер реактива Thermo Fisher Scientific

MRPHK-550b-2-5p 479033_mir

MRPHK-199a-5p 478231_mir

MRPHK-320a 478594_mir

мкPНK-26a-5p 477995_mir

мкPНK-27a-5p 477998_mir

MRPHK-96-5p 478215_mir

MRPHK-188-3p 477942_mir

MRPHK-203a-5p 478756_mir

mrphk-211 478766_mir

MRPHK-133a-5p 478706_mir

MRPHK-39-3p 478293_mir

Оцените статью
VIPdisser.ru