Спектральный анализ — главный метод определения химического состава удалённых светящихся объектов, например, звёзд. Первыми элементами, открытыми посредством этого метода, стали цезий и рубидий. А вскоре обнаружился и гелий, причём, на Солнце его открыли на 27 лет раньше, чем на Земле.
https://youtube.com/watch?v=dAR-kEmwwG4%3Ffeature%3Doembed
Всем известны семь основных цветов, распознаваемых нашим глазом, но ещё есть оттенки в переходе от одного цвета к другому. Свет – это смесь электромагнитных колебаний, и каждое колебание имеет свою длину волны, и, соответственно, свой цвет. Пропуская свет от объекта через призму, его разлагают на спектры. От получившейся картины (спектрограммы) и делают выводы о характеристиках испустившего свет объекта. Пример из жизни — радуга после дождя. Капли дождя разлагают свет, летящий от солнца на семь основных цветов. Единица измерения длин волн – Ангстремодна стомиллионная часть сантиметра
Все спектры, которые возможно наблюдать, подразделяются на три класса:
- Применение в астрономии
- Значение для космологии
- Понятие о спектральном анализе
- Виды спектрального анализа
- Эмиссионный спектральный анализ
- Область применения
- Экология
- Геология
- Металлургия
- Машиностроение
- Способы классификации
- Классификация методов спектрального анализа
- Качественный спектральный анализ
- Количественный спектральный анализ
Применение в астрономии
Спектральный анализ очень широко применяется в современной астрономии. Это метод, способный выдавать самые подробные и уникальные сведения об объектах космоса.
Анализируя излучения объекта, можно очень точно установить его основные характеристики.
Распространение света имеет вид электромагнитных волн. Для каждого цвета характерна длина волны определённой величины. Длина волны уменьшается в спектре от 7000 Ангстрем до 4000 Ангстрем, от красных лучей – к фиолетовым. После фиолетовых лучей располагаются ультрафиолетовые лучи. Они не улавливаются глазом, но фиксируются приборами. После ультрафиолетового идут рентгеновские лучи — они имеют еще меньшую длину волны.
Другая сторона спектра, красная, продолжается инфракрасными лучами, также невидимыми человеческому глазу, но улавливаемыми специально подготовленными фотопластинками. Спектральные наблюдения – это исследования лучей в диапазоне цветов от ультрафиолетового до инфракрасного. Насыщенность спектральных линий определяет количество молекул и атомов, излучающих или поглощающих энергию. Количество атомов тем больше, чем ярче линия в излучаемом спектре и темнее в поглощаемом. Для Солнца и всех остальных звёзд характерно наличие газовой атмосферы. Излучение, проходящее через атмосферу, проявляется тёмными линиями поглощения на непрерывном спектре видимой поверхности. Для таких объектов – это спектры поглощения. Спектральный анализ, базирующийся на принципе Доплера, позволяет определять скорости движения небесных тел относительно нашей планеты по лучу зрения. У Приближающегося к наблюдателю источника света укорачиваются длины волн, а если источник удаляется, то длины волн будут увеличиваться. Если тело движется на Земле, то его скорость вызывает ничтожные смещения линий в спектре. И даже скорости небесных тел, имеющие значения десятков и сотен км./сек., видимы в настолько малых смещениях, что наблюдение их на спектрограммах реально только помощи микроскопа. Полученная спектрограмма светила сравнивается с эталонами, которыми служат спектрограммы земных источников излучения, например, неоновой лампы. Относительно неподвижного спектра в эталонах определяется сдвиг спектральных линий наблюдаемого объекта. Этот сдвиг очень мал, и величина его исчисляется десятыми и сотыми долями миллиметра.
Значение для космологии
В настоящее время все спектры химических элементов определены и сведены в специальные таблицы. Спектральный анализ позволил открыть некоторые неизвестные элементы, например, рубидий и цезий. И эти новые элементы иногда получали названия, соответствующие цветам преобладающих линий спектра: рубидий даёт тёмно-красные линии, а цезий (небесно-голубой) – голубые. Только спектральный анализ помог определить химический состав нашего светила и других звёзд. Использование иных методов для достижения этой цели не представляется возможным. Как оказалось, и на нашей планете, и на далёких звёздах присутствуют одинаковые химические элементы. Астрофизика, используя спектральный анализ, узнаёт характеристики, которыми обладают звёзды, газовые облака и другие объекты. Это химический состав, температура, скорость движения, магнитная индукция, давление. Все эти величины определяются только анализом спектральных линий космических объектов. Приняв на вооружение эффект Доплера, стало возможным измерение лучевых скоростей тысяч звёзд, газовых туманностей и других внегалактических объектов. Определились закономерности движения отдельных светил и вращения звёздных систем. Были установлены величины масс галактик и звёздных скоплений. Используя эффект, открытый голландским физиком Зееманом, можно определять параметры космических магнитных полей. Сильные магнитные поля расщепляют линии спектра. Такой эффект создаёт и поле электрическое, которое может возникать в звезде на непродолжительное время (эффект Штарка).
https://youtube.com/watch?v=Z_oPdun1GJY%3Ffeature%3Doembed
Спектральный анализ широко используется в различных отраслях промышленности и науки, и служит универсальным инструментом, который позволяет точно и оперативно исследовать элементный состав вещества. Эта информация необходима для правильного ведения технологических процессов, контроля качества исходных материалов, промежуточного и готового продуктов, а также позволяет создавать новые материалы с заданными качествами.
Современные спектральные приборы постоянно совершенствуются в соответствии с возрастающими требованиями к точности и чувствительности. В связи с разработкой и внедрением новых технологий создаются спектрометры, которые обеспечивают необходимую производительности и возможность автоматизации процесса анализа.
Понятие о спектральном анализе
Спектральный анализ — совокупность методов анализа химического состава веществ, в основе которого лежит исследование спектров испускания, поглощения, отражения и люминесценции. При этом используется основное свойство спектров: длина волны или частота — индивидуальный параметр, который соответствует только определенному атому исследуемого вещества, и не зависит от источника возбуждения.
Метод отличается высокой чувствительностью, точностью и простотой, что делает его универсальным, и обуславливает его широкое распространение в промышленности.
Виды спектрального анализа
В основе спектральных методов лежат такие процессы:
В зависимости от процесса, который находится в основе принципа действия, спектральные методы анализа подразделяются на следующие виды:
Эмиссионный спектральный анализ
Наибольшее распространение получил оптический эмиссионный спектральный атомный анализ (ОЭСА). Этот мощный инструмент позволяет решать различные по сложности аналитические задачи.
Оптико-эмиссионные спектральные приборы обладают высокой избирательностью, позволяют исследовать различные вещества с высокой скоростью, чувствительностью и точностью. При этом расход анализируемого вещества крайне мал.
Область применения
Атомный спектральный анализ находит широкое практическое применение по сравнению с другими методами спектрального анализа. Он используется для исследования самых разнообразных объектов, а при анализе металлов и сплавов значение ОЭСА трудно переоценить.
С помощью эмиссионной спектрометрии решаются целый ряд аналитических задач:
Экология
Перед экологами стоят разнообразные задачи, среди которых особое место занимают определение соединений, загрязняющих почву, атмосферу и водный бассейн. Экологический мониторинг необходим для предотвращения угрозы жизни и здоровью людей, и окружающей среде, поэтому точность и скорость получения результатов анализа — наиболее важные требования, предъявляемые к анализаторам.
Эмиссионные спектрометры — универсальные приборы, которые способны исследовать не только металлические, но и токонепроводящие пробы. С их помощью можно исследовать вещества, находящиеся в различных агрегатных состояниях и формах. Диапазон спектральных линий охватывает все интересующие элементы, в том числе C, S, P, O, H и щелочно-земельные элементы.
Геология
Спектральный анализ дает возможность анализировать химический состав руд и минералов. С его помощью изучаются условия их образования, что позволяет целенаправленно проводить геологическую разведку для поиска новых месторождений.
Технология обогащения рудных и нерудных материалов требует тщательного контроля качества на всех стадиях процесса. Использование спектральных приборов делают это возможным, так как обеспечивается необходимая производительность и точность результатов анализа.
Кроме этого, спектральный анализ используется для изучения метеоритного материала. Это дает возможность сделать практические выводы о составе космических объектов.
Металлургия
Значение атомно-эмиссионного анализа в металлургической промышленности очень велико, так как этот метод дает ряд преимуществ. С помощью спектральных приборов решается большинство аналитических задач:
Эмиссионные приборы широко используются для сортировки и анализа состава металлического лома, который служит сырьем для получения стали. Спектральный анализ незаменим при ведении плавки, так как позволяет оперативно получить информацию о химическом составе сплава. С его помощью решаются, как рутинные задачи, так и сложные проблемы, связанные с получением новых материалов с заданными свойствами.
Машиностроение
Исходными материалами металлообрабатывающих предприятий служат заготовки, полученные путем литья и в результате обработки металлов давлением (поковки и металлопрокат). Организовать входящий контроль без определения химического состава заготовок невозможно, а пренебрежение этим технологическим этапом может стать причиной неисправимого брака и экономическими потерями.
Атомно-эмиссионные спектрометры — оптимальный вариант приборов для машиностроения, которые дают возможность получать точную информацию о химическом составе материала или марке стали в кратчайшие сроки. Портативные модели позволяют проводить исследования в полевых условиях, и не требуют наличия у оператора специальных знаний и особых умений, а стационарные приборы решают аналитические задачи любой сложности.
Возможности оптико-эмиссионных приборов не ограничиваются указанными выше областями промышленности, и позволяют использовать их во многих сферах жизнедеятельности человека. Конструкция и методы исследования постоянно совершенствуются, что позволяет им соответствовать уровню развития науки и технологии, и иметь оптимальные технико-экономические показатели.
Со дня открытия «спектрального анализа» вокруг этого термина велось много споров. Сначала физический принцип спектрального анализа подразумевал метод идентификации элементарного состава пробы по наблюдаемому спектру, который возбуждался в каком-нибудь высокотемпературном источнике пламени, искре или дуге.
В дальнейшем под спектральным анализом стали понимать другие методы аналитического изучения и возбуждения спектров:
В конце концов, были открыты рентгеновские и гамма спектры. Поэтому правильно, говоря о спектральном анализе, подразумевать совокупность всех существующих методов. Однако чаще явление идентификации по спектрам используют, понимая эмиссионные методы.
Способы классификации
Еще один вариант классификации – это разделение на молекулярные (определение молекулярного состава пробы) и элементарные (определение атомарного состава) исследования спектров.
Молекулярный метод основан на изучении спектров поглощения, комбинационного рассеяния и люминесценции; атомарный состав определяется по спектрам возбуждения в горячих источниках (молекулы в основном разрушаются) либо по данным рентгеноспектральных исследований. Но такая классификация не может быть строгой, потому что иногда оба эти метода совпадают.
Классификация методов спектрального анализа
Отталкиваясь от задач, которые решаются вышеописанными методами, изучение по спектрам делят на методы, применяемые для исследования сплавов, газов, руд и минералов, готовых изделий, чистых металлов и т.д. Каждый изучаемый объект обладает своими характерными особенностями и стандартами. Два основных направления анализа спектров:
Что изучается при их проведении, рассмотрим далее.
Диаграмма методов спектрального анализа
Качественный спектральный анализ
Качественный анализ служит для того, чтобы определить из каких элементов состоит анализируемый образец. Необходимо получить спектр пробы, возбужденный в каком-либо источнике, и по обнаруженным спектральным линиям определить каким элементам они принадлежат. Так станет понятно, из чего состоит образец. Сложность качественного анализа – это большое количество спектральных линий на аналитической спектрограмме, расшифровка и идентификация которых слишком трудоемка и не точна.
Количественный спектральный анализ
Метод количественного спектрального анализа основан на том, что интенсивность аналитической линии увеличивается с возрастанием содержания определяемого элемента в пробе. Эта зависимость строится на основе множества факторов, которые сложно численно рассчитать. Поэтому теоретически установить связь между интенсивностью линии и концентрацией элемента практически невозможно.
Поэтому проводятся относительные измерения интенсивностей одной и той же спектральной линии при изменении концентрации определяемого элемента. Так, при неизменности условий возбуждения и регистрации спектров, измеряемая энергия излучения пропорциональна интенсивности. Измерение этой энергии (либо зависящей от нее величины) дает нужную нам эмпирическую связь между измеряемой величиной и концентрацией элемента в пробе.
Ни один из источников не дает монохроматического света, т.е. света строго определенной длины волны. В этом можно убедиться на опытах по разложению света в спектр с помощью призмы, а также опыты по интерференции и дифракции.
Та энергия, которую несет с собой свет от источника, определенным образом распределена по волнам всех длин, входящим в состав светового пучка.
Для характеристики распределения излучения по частотам нужно ввести новую величину: интенсивность, приходящуюся на единичный интервал частот. Эту величину называют спектральной плотностью интенсивности излучения.
Спектральную плотность потока излучения можно найти экспериментально. Для этого надо с помощью призмы получить спектр излучения, например, электрической дуги, и измерить плотность потока излучения, приходящегося на небольшие спектральные интервалы шириной Δν.
Полагаться на глаз при оценке распределения энергии нельзя. Глаз обладает избирательной чувствительностью к свету: максимум его чувствительности лежит в желто-зеленой области спектра. Лучше всего воспользоваться свойством черного тела почти полностью поглощать свет всех длин волн. При этом энергия излучения (т.е. света) вызывает нагревание тела. Поэтому достаточно измерить температуру тела и по ней судить о количестве поглощенной в единицу времени энергии.
Спектральный состав излучения атомов различных веществ весьма разнообразен. Тем не менее, все спектры можно разделить на три сильно отличающихся друг от друга типа.
Сплошной (непрерывный) спектр
Накаленные твердые и жидкие тела и газы (при большом давлении) испускают свет, разложение которого дает сплошной спектр, в котором спектральные цвета непрерывно переходят один в другой. Характер непрерывного спектра и сам факт его существования определяются не только свойствами отдельных излучающих атомов, но и взаимодействием атомов друг с другом. Сплошные спектры одинаковы для разных веществ, и поэтому их нельзя использовать для определения состава вещества.
Линейчатый (атомный) спектр
Возбужденные атомы разреженных газов или паров испускают свет, разложение которого дает линейчатый спектр,состоящий из отдельных цветных линий. Каждый химический элемент имеет характерный для него линейчатый спектр. Атомы таких веществ не взаимодействуют друг с другом и излучают свет только определенных длин волн. Изолированные атомы данного химического элемента излучают строго определенные длины волн. Это позволяет по спектральным линиям судить о химическом составе источника света.
Обычно для наблюдения линейчатых спектров используют свечение паров вещества в пламени или свечение газового разряда в трубке, наполненной исследуемым газом. При увеличении плотности атомарного газа отдельные спектральные линии расширяются и, при очень большой плотности газа, когда взаимодействие атомов становится существенным, эти линии перекрывают друг друга, образуя непрерывный спектр.
Молекулярный (полосатый) спектр
Спектр молекулы состоит из большого числа отдельных линий, сливающихся в полосы, четкие с одного края и размытые с другого. В отличие от линейчатых спектров полосатые спектры создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом. Серии очень близких линий группируются на отдельных участках спектра и заполняют целые полосы.
В 1860 г. немецкие ученые Г. Кирхгоф и Р. Бунзен, изучая спектры металлов, установили следующие факты:
1) каждый металл имеет свой спектр;
2) спектр каждого металла строго постоянен;
3) введение в пламя горелки любой соли одного и того же металла всегда приводит к появлению одинакового спектра;
4) при внесении в пламя смеси солей нескольких металлов в спектре одновременно появляются все их линии;
5) яркость спектральных линий зависит от концентрации элемента в данном веществе.
Если белый свет от источника, дающей сплошной спектр, пропускается через пары исследуемого вещества и затем разлагается в спектр, то на фоне сплошного спектра наблюдаются темные линии поглощения в тех же самых местах, где находились бы линии спектра испускания паров исследуемого элемента. Такие спектры получили название атомных спектров поглощения.
Все вещества, атомы которых находятся в возбужденном состоянии, излучают световые волны, энергия которых определенным образом распределена по длинам волн. Поглощение света веществом также зависит от длины волны. Атомы поглощают излучение лишь тех длин волн, которые они могут испускать при данной температуре.
называется метод изучения химического состава вещества, основанный на исследовании его спектров. Отдельные линии в спектрах различных элементов могут совпадать, но в целом спектр каждого элемента является его индивидуальной характеристикой.
Спектральный анализ сыграл большую роль в науке. Например, в спектре Солнца (1814) были открыты фраунгоферовы темные линии, происхождение которых объясняется следующим образом. Солнце, являясь раскаленным газовым шаром (Т ~ 6000 °С), испускает сплошной спектр. Солнечные лучи проходят через атмосферу Солнца (солнечную корону, температура которой ~2000— 3000 °С. Корона поглощает из сплошного спектра излучение определенной частоты, а на Земле регистрируется солнечный спектр поглощения, по которому можно определить, какие химические элементы присутствуют в короне Солнца. По спектрам поглощения на Солнце были обнаружены все земные элементы, а также неизвестный ранее элемент, который назвали гелий. Через 26 лет (1894) открыли гелий на Земле. Благодаря спектральному анализу на Земле было открыто еще 25 химических элементов.
Фраунгоферовы линии дают информацию не только о химическом составе звезды, но и о ее температуре и давлении на поверхности. Более того, спектральный анализ Солнца и звезд показал, что входящие в их состав химические элементы имеются и на Земле, т.е. вещество Вселенной состоит из одного и того же набора элементов.
Спектроскопом называется прибор, с помощью которого визуально исследуется спектральный состав света, испускаемого некоторым источником. Если регистрация спектра происходит на фотопластинке, то прибор называется спектрографом.
Для точного исследования спектров такие простые приспособления, как узкая щель, ограничивающая световой пучок, и призма, уже недостаточны. Необходимы приборы, дающие четкий спектр, т.е. приборы, хорошо разделяющие волны различной длины и не допускающие перекрытия отдельных участков спектра. Такие приборы называют спектральными аппаратами. Чаще всего основной частью спектрального аппарата является призма или дифракционная решетка.
Рассмотрим схему устройства призменного спектрального аппарата. Исследуемое излучение поступает вначале в часть прибора, называемую коллиматором. Коллиматор представляет собой трубу, на одном конце которой имеется ширма с узкой щелью, а на другом — собирающая линза. Щель находится на фокусном расстоянии от линзы. Поэтому расходящийся световой пучок, попадающий на линзу из щели, выходит из нее параллельным пучком и падает на призму.
Так как разным частотам соответствуют различные показатели преломления, то из призмы выходят параллельные пучки, не совпадающие по направлению. Они падают на линзу. На фокусном расстоянии этой линзы располагается экран — матовое стекло или фотопластинка. Линза фокусирует параллельные пучки лучей на экране, и вместо одного изображения щели получается целый ряд изображений. Каждой частоте (узкому спектральному интервалу) соответствует свое изображение. Все эти изображения вместе и образуют спектр.
Описанный прибор называется . Если вместо второй линзы и экрана используется зрительная труба для визуального наблюдения спектров, то прибор называется .
Применение спектрального анализа
Линейчатые спектры играют особо важную роль, потому что их структура прямо связана со строением атома. Ведь эти спектры создаются атомами, не испытывающими внешних воздействий. Состав сложных, главным образом органических смесей анализируется по их молекулярным спектрам.
С помощью спектрального анализа можно обнаружить данный элемент в составе сложного вещества, если даже его масса не превышает 10-10г. Линии, присущие данному элементу, позволяют качественно судить о его наличии. Яркость линий дает возможность (при соблюдении стандартных условий возбуждения) количественно судить о наличии того или иного элемента.
Спектральный анализ можно проводить и по спектрам поглощения. В астрофизике по спектрам можно определить многие физические характеристики объектов: температуру, давление, скорость движения, магнитную индукцию и др. с помощью спектрального анализа определяют химический состав руд и минералов.
Основные направления применения спектрального анализа таковы: физико-химические исследования; машиностроение, металлургия; атомная индустрия; астрономия, астрофизика; криминалистика.
Современные технологии создания новейших строительных материалов (металлопластиковые, пластиковые) непосредственно взаимосвязаны с такими фундаментальными науками как химия, физика. Данные науки используют современные методы исследования веществ. Поэтому спектральный анализ можно применять для определения химического состав состава строительных материалов по их спектрам.
Статья про солнечный спектр