Адаптация организма к физическим нагрузкам обеспечивается

Адаптация к различному режиму (повышение и понижение) двигательной активности. Срочная и долговременная адаптации, реакция на нагрузки динамического и статического характера. Адаптационные изменения, происходящие в организме при физических нагрузках.

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Глава 1. Механизмы адаптации

Глава 2. Адаптация к различному режиму двигательной активности

2.1 Повышенная активность

2.2 Пониженная активностъ

Глава 3. Виды адаптации и их механизмы

3.1 Срочная адаптация

3.1.1 Срочные адаптационные реакции на нагрузки динамического и статического характера

3.2 Долговременная адаптация

Глава 4. Адаптационные изменения, происходящие в организме

4.1 Адаптационные изменения в сердечно-сосудистой системе

4.2 Адаптационные изменения систем дыхания

4.3 Адаптационные изменения системы крови

Глава 5. Адаптация к физическим нагрузкам и ее медико-биологические характеристики у спортсменов циклических видов спорта

Глава 6. Легкоатлетический бег

Глава 7. Борьба

Список использованной литературы

Исследования, раскрывающие механизмы адаптации к физическим нагрузкам, в большей своей части направлены на изучение морфологических и функциональных особенностей органов кровообращения у тренированных спортсменов. Такое направление не является случайным, так как известно, что ССС играет ведущую роль в повышении аэробной производительности организма. Последнее особенно важно при выполнении длительной циклической работы.

Общие представления о приспособительных реакциях сердца и сосудов к мышечной деятельности сложились около 30 лет назад. Уже тогда было установлено, что увеличенная при физической работе потребность в кислороде удовлетворяется вследствие усиления деятельности органов дыхания и сердца и что мощность и длительность работы лимитируются главным образом функциональными возможностями органов кровообращения.

Усиление притока крови к работающим органам обеспечивается сложным комплексом нервных и гуморальных влияний. Это осуществляется как за счет увеличения МОК, так и вследствие его перераспределения. Сужение сосудов, или вазоконстрикция, возникающая при мышечной деятельности в неактивных органах, способствует усилению гиперемии.

Исследования показали, что адаптивные сдвиги в ССС проявляются не только при мышечной работе, но и в состоянии покоя. Они характеризуются морфологическими и функциональными особенностями сердца и сосудов.

Еще в XIX в. было отмечено, что одним из постоянных признаков адаптации организма к физическим нагрузкам является редкий пульс — брадикардия — в состоянии покоя.

Опыты на животных свидетельствуют о большой роли сосудистой системы в адаптации организма к мышечной деятельности. Приспособительные сосудистые реакции, обеспечивающие увеличение кровотока к работающим органам, имеют не меньшее значение, чем усиление деятельности сердца. Повышение сократительной функции миокарда обеспечивает лишь передвижение увеличенной при работе массы венозной крови в артерии. Сосуды же благодаря прессорным и депрессорным реакциям в разных областях тела по-разному распределяют циркулирующую кровь между отдельными органами — в соответствии со степенью их активности.

Периферическое сопротивление является суммарным показателем артериол разных областей тела. Эта величина уменьшается под влиянием физической работы. Динамика периферического сопротивления в восстановительном периоде различна у лиц разной степени тренированности. У более тренированных его восстановление, как правило, происходит медленнее, чем у менее тренированных. Понижение периферического сопротивления свидетельствует о вазодилатации в обширных областях тела. Оно облегчает деятельность сердца и благоприятно отражается на протекании тканевого метаболизма.

Именно благодаря перестройке структуры и функций сердца и сосудов, а так же совершенствованию системы регуляции производительность системы кровообращения спортсмена оказывается много выше, чем у лиц, не занимающихся спортом.

Глава1. Механизмы адаптации

Адаптация — это физиологическое приспособление строения и функций организма, изменений его органов и клеток в соответствии с условиями окружающей среды. Проблема адаптации необычайно широка и многогранна, охватывает сферу интересов биологов, физиологов и медиков. Биология и экологическая физиология занимаются изучением видовой приспособляемости. Физиология исследует индивидуальную адаптацию, ее формирование и механизмы. Представление об адаптативных особенностях человека, резервах организма, понимание механизмов нарушений его функций должно лежать в основе мышления каждого врача.

Адаптацией можно управлять то есть способствовать повышению выносливости своего организма — эту цель должны ставить перед собой люди педагоги. Наиболее эффективным средством повышения сопротивляемости организма болезнях и неблагоприятным влиянием среды являются регулярные занятия физической культурой и закаливанием.

Первое соприкосновение организма с измененными условиями или отдельными факторами вызывает ориентировочную реакцию, которая может перейти в генерализованное возбуждение параллельно. Если раздражение достигает определенной интенсивности, это приводит к возбуждению симпатической системы и выделению адреналина.

На протяжении последующего периода формируются новые координационные отношения: усиленный эфферентный синтез приводит к осуществлению целенаправленных защитных реакций. Гормональный фон изменяется за счет включения гипофизарно-адреналовой системы. Глюкокортикоиды и вьщеляемые в тканях биологически активные вещества мобилизуют структуры, в результате деятельности которых ткани получают повышенное энергетическое, пластическое и защитное обеспечение. Все это составляет основу третьей фазы (устойчивой адаптации).

Важно отметить, что переходная фаза стойкой адаптации имеет место только при том условии, что адаптогенный фактор обладает достаточной интенсивностью и длительностью действия. Если он действует кратковременно, то аварийная фаза прекращается и процесс адаптации не формируется. Если адаптагенный фактор действует длительно или повторно прерывисто, это создает достаточные предпосылки для формирования так называемых структурных следов. Суммируются эффекты действия факторов, углубляются и нарастают метаболические изменения, и аварийная фаза адаптации превращается в переходную, а затем и в фазу стойкой адаптации.

Поскольку фаза стойкой адаптации связана с постоянным напряжением управляющих механизмов, перестройкой нервных и гуморальных соотношений, формированием новых функциональных систем, то эти процессы в определенных случаях могут истощаться. Если принять во внимание, что в ходе развития адаптивных процессов важную роль играют гормональные механизмы, то становится ясно, что они являются наиболее истощаемым звеном.

Истощение управляющих механизмов, с одной стороны, и клеточных механизмов, связанных с повышенными энергетическимизатратами, с другой стороны, приводит к дезадаптации.

Симптомами этого состояния являются функциональные изменения в деятельности организма, напоминающие те сдвиги, которые наблюдаются в фазе острой адаптации.

Вновь в состояние повышенной активности приходят вспомогательные системы — дыхание, кровообращение, неэкономично тратится энергия. Однако координация между системами, обеспечивающими состояние, адекватное требованию внешней среды, осуществляется неполноценно, что может привести к гибели.

Дезадаптация возникает чаще всего в тех случаях, когда действие факторов, явившихся основными стимуляторами адаптивных изменений в организме, усиливается, и это становится несовместимым с жизнью.

Двигательная активность — основное свойство животных и человека, неотъемлемая часть жизни и развития каждого организма. В течение жизни нередко под влиянием каких-либо требований внешней среды уровень двигательной активности изменяется в сторону его повышения или понижения.

Если человек изменяет образ жизни так, что его двигательная активность по необходимости становится высокой, то его организм должен приспосабливаться к новому состоянию (например, тяжелая физическая работа, систематические занятия спортом и т. д.). В этих случаях развивается специфическая адаптация, сводящаяся к перестройке мышечной ткани, точнее ее массы, в соответствии с повышенной функцией.

В основе этого механизма лежит активация синтеза мышечных белков. Увеличение их функции на единицу массы ткани вызывает изменение активности генетического аппарата, что приводит к увеличению числа рибосом и полисом, в которых происходит синтез белков. В конечном итоге клеточные белки растут в объеме и количестве, нарастает масса мышечной ткани, другими словами, возникает гипертрофия. При этом в митохондриях мышечных клеток увеличивается использование пирувата, что предотвращает повышение содержания лактата в крови и обеспечивает мобилизацию и использование жирных кислот, а это, в свою очередь, приводит к повышению трудоспособности. В результате объем функции приходит в соответствие с объемом структуры органа, и организм в целом становится адаптированным к нагрузке данной величины. Если человек проводит усиленную тренировку в объеме, значительно превышающем физиологический, то структура мышц подвергается особенно выраженным изменениям. Объем мышечных волокон возрастает в такой степени, что кровоснабжение не справляется с задачей столь высокого обеспечения мышц. Это приводит к обратному результату энергетика мышечных сокращений ослабевает (так, например, может быть при занятиях культуризмом). Такое явление можно считать дезадаптацией.

В целом, хорошо дозируемые мышечные нагрузки способствуют повышению неспецифической резистентности к действию самых различных факторов. Иногда человек и животное бывают вынуждены адаптироваться и к пониженной двигательной активности — гипокинезии.

Ограничения двигательной активности живого организма называют гипокинезией (синоном термина “гиподинамия”).

Степени гипокинезии в естественных условиях и в опыте могут быть различными — от небольшого ограничения подвижности до почти полного ее прекращения. Полной гипокинезии можно добиться, лишь используя фармакологические вещества типа миорелаксина (имеются в виду препараты, которые препятствуют распространению импульсов с нервов на мышцы и, таким образом, выключают деятельность скелетной мускулатуры).

Можно говорить о различных видах гипокинезии. К числу таковых относятся: отсутствие необходимости движения; невозможность двигаться в связи со спецификой внешних условий; запрет движений при режиме покоя в связи с заболеванием; невозможность двигаться в связи с заболеванием.

Примером гипокинезии, связанной с отсутствием необходимости в двигательной активности, является режим нашей повседневной жизни. Разумеется, речь идет о людях, занимающихся умственным трудом, ведущим так называемый «сидячий образ жизни». Однако современная высокоразвитая техника, используемая на производстве, приводит к тому, что рабочие и крестьяне в процессе трудовой деятельности прилагают все меньше и меньше физических усилий, так как труд человека постепенно заменяется работой различных машин. Таким образом, научно-техническая революция несет с собой гипокинезию, являющуюся отрицательным моментом для человека как биологической системы.

Аварийная фаза адаптации к гипокинезии отличается первоначальной мобилизацией реакций, компенсирующих недостаток двигательных функций.

В реакцию организма на гипокинезию вовлекается прежде всего нервная система с ее рефлекторными механизмами. Взаимодействуя с гуморальными механизмами, нервная система и организует защитные реакции адаптации на действие гипокинезии.

Читайте также:  Заказать кандидатскую диссертацию с защитой ✅ цена написание под ключ

Исследования показали, что к числу таких защитных реакций относится возбуждение симпатоадреналовой системы, связанное большей частью с эмоциональным напряжением при гипокинезии. Во вторую очередь защитные реакции включают гормоны адаптации.

Симпатоадреналовая система обусловливает временную частичную компенсацию нарушений кровообращения в виде усиления сердечной деятельности, повышения сосудистого тонуса и, следовательно, кровяного давления, усиления дыхания (повышение вентиляции легких). Выделение адреналина и возбуждение симпатической системы способствуют повышению уровня катаболизма в тканях. Однако эти реакции кратковременны и быстро угасают при продолжающейся гипокинезии.

Дальнейшее развитие гипокинезии можно представить себе следующим образом. Неподвижность способствует прежде всего снижению катаболических процессов. Выделение энергии уменьшается. И интенсивность окислительных реакций становится незначительной. Поскольку в крови снижается содержание углекислоты, молочной кислоты и других продуктов метаболизма, в норме стимулирующих дыхание и кровообращение (интенсивность деятельности сердца, скорость кровотока и кровяное давление), то эти показатели также снижаются. У людей в состоянии гипокинезии уменьшается вентиляция легких, падает частота сердечных сокращений, ниже становится кровяное давление.

Если при этом питание остается таким же, как при активной деятельности, наблюдается положительный баланс, накопление в организме жиров и углеводов. При продолжающейся гипокинезии такое превышение ассимиляции довольно скоро приводит к ожирению.

Характерным изменениям подвергается сердечно-сосудистая система. Постоянная недогрузка сердца в связи с уменьшением венозного возврата в правое предсердие служит причиной недорастяжения его кровью, уменьшения минутного объема. Сердечная мышца начинает работать ослаблено. В волокнах сердечной мышцы снижается интенсивность окислительных реакций, и это приводит к изменению по типу атрофии (слово “атрофия” означает отсутствие питания). Уменьшается масса мышц, снижается их энергетический потенциал, и, наконец, возникают деструктивные изменения.

В опытах на кроликах, подвергавшихся длительное время действию гипокинезии, было установлено, что сердце подопытного кролика уменьшается в объеме на 25% по сравнению с сердцем кролика из контрольной фуппы. Аналогичные результаты были получены Н.А. Агаджаняном (1962) у обследуемых после 60-суточного их пребывания в замкнутых камерах малого объема.

Изменения происходят и в сосудистой системе. В условиях гипокинезии, когда выброс крови из сердца снижается и количество циркулирующей крови уменьшается в связи с ее депонированием изастаиванием в капиллярах, тонус сердца постепенно ослабляется. Это снижает кровяное давление, что, в свою очередь, приводит к плохому снабжению тканей кислородом и падению в них интенсивности обменных реакций (порочный круг).

Застои крови в капиллярах и емкостном отделе сосудистого русла — мелких венах — способствуют повышению проницаемости сосудистой стенки для воды и электролитов и выпотеванию их в ткани. В результате возникают отеки различных частей тела. Ослабление работы сердца служит причиной повышения давления в системе полых вен, что, в свою очередь, к застою в печени. Последнее способствует снижению ее обменной, барьерной и других очень важных для состояния организма функций. Кроме того, плохое кровообращение в печени вызывает застой крови в бассейне воротной вены. Отсюда повышение давления в капиллярах кишечной стенки и уменьшение всасывания веществ из кишечника.

Ухудшение условия кровообращения в пищеварительной системе снижают интенсивность сокоотделения, вследствие чего возникают расстройства пищеварения. Уменьшение кровяного давления и объема циркулирующей крови является причиной снижения мочеобразования в почках. В организме при этом повышается содержание остаточного азота, не выводимого с мочой.

Специфические изменения при ограничении движений возникают и в суставах. Эти изменения касаются синовиальных оболочек. Уменьшается количество суставной жидкости, и суставы теряют свою подвижность.

Состояние, характерное для гипокинезии, может быть обратимым или необратимым. В последнем случае оно может закончиться гибелью, чаще всего в связи с присоединившимся патологическим процессом, так как сопротивляемость организма в условиях гипокинезии очень низка. Все вышеизложенное касается абсолютной вынужденной гипокинезии. В отличие от адаптации к измененному газовому составу, низкой температуре и т.п., адаптация к абсолютной гипокинезии не может считаться полноценной. Вместо фазы резистентности идет медленное истощение всех функций, Если гипокинезия не абсолютна, а лишь относительная, устанавливается определенный низкоэнергетический гомеостазис — фаза резистентности.

Она отличается нестабильностью, резким снижением неспецифической устойчивости, предрасположением к любым патологическим процессам.

Теоретические предпосылки адаптации (от позднелат. adaptatio — приспособление) раскрыты в учении об общем адаптационном синдроме Селье (по имени канадского ученого, определившего его содержание). Общий адаптационный синдром Селье — это комплекс неспецифических реакций организма на действие раздражителя, которые протекают в несколько стадий: тревоги, резистентности, истощения.

Для стадии тревоги характерна предельная мобилизация физиологических функций, лежащая на грани нормы и патологии. Достижение адаптивного эффекта в этой стадии обеспечивается усиленной продукцией гормонов системы гипоталамус — гипофиз — надпочечники. При воздействии предельной мышечной нагрузки стадия тревоги проявляется в максимальном по силе и длительности напряжении мышц, что в конечном счете приводит к быстрому истощению энергетических резервов и отказу от продолжения работы.

Вегетативное обеспечение мышечной работы, сопровождающейся стресс-реакцией, происходит наименее экономичным путем. Это и резкое учащение сердечных сокращений при снижении ударного объема крови, и повышение частоты дыхания при уменьшении его глубины и согласованности с выполняемыми движениями. Перераспределение кровотока при работе обширных мышечных групп приводит к относительному ухудшению кровоснабжения внутренних органов, вследствие чего могут наблюдаться расстройства в их деятельности.

Причиной повреждения внутренних органов может стать перекисное окисление, активируемое избыточным выделением катехоламинов, тироксина, глюкагона (рис. 2). Свободные радикалы—продукты перекисного окисления, связываясь с фосфолипидами клеточных мембран, приводят к нарушению их целостности. Повреждающее влияние этой стадии адаптации может проявляться в повышенной проницаемости кровеносных сосудов, изъязвлении стенок желудка и кишечника и т. д.

Адаптивное значение стадии тревоги может рассматриваться с точки зрения опережающего отражения агрессивного влияния факторов внешней среды. Организм пытается предупредить их разрушительное действие до того, как оно станет необратимым по своим последствиям. При этом неизбежны издержки. Появление язв на стенках желудка и 12-перстной кишки — типичная побочная реакция, которая является результатом воздействия адаптивных гормонов. Усиленная секреция этих гормонов является наиболее надежным механизмом срочной адаптации целостного организма.

Динамические нагрузки умеренной и малой мощности характеризуются постепенным включением кислородно-транспортной системы, так что потребление кислорода до определенного уровня связано линейной зависимостью с мощностью выполняемой работы.

В свою очередь, величина сердечного выброса так же находится в прямой зависимости от потребления кислорода, а значит и от мощности выполняемой работы.

Предельная величина тахикардии во время выполнения нагрузок зависит от уровня физической работоспособности и возраста испытуемых.

Скорость нарастания величины УО существенно выше скорости роста ЧСС. В результате УО приближается к своему максимальному значению при потреблении кислорода равном примерно 40% от МПК и ЧСС около 110 уд/мин.

Рост УО во время выполнения физической нагрузки обеспечивается благодаря взаимодействия ряда регуляторных механизмов. Увеличение сократительной способности сердечной мышцы сопряжено также с ростом ЧСС.

Степень «включенности» тех или иных механизмов адаптации, а значит, и процессов обеспечения жизнеобеспечения миокардиальных клеток во многом определяется характером нагрузки. При статических нагрузках, сопровождающихся вовлечением в работу больших мышечных групп, из-за увеличения внутримышечного давления частично или полностью блокируется кровоснабжение напряженных мышц.

Таким образом, наиболее существенным отличием в реакциях системы кровообращения на статические нагрузки является выраженный подъем диастолического давления, т.е. увеличение постнагрузки. Это, как известно, существенно повышает напряжение миокарда и, в свою очередь, определяет включение тех механизмов долговременной адаптации, которые обеспечивают адекватное кровоснабжение тканей в этих условиях.

Физиологические механизмы долговременной адаптации аналогичны механизмам стадии резистентности. При тяжелой (стрессовой) физической нагрузке происходит резкое уменьшение резервов аденозинтри-фосфорной кислоты (АТФ), вследствие чего отношение продуктов ее распада к оставшемуся количеству возрастает. Увеличение продуктов энергообмена АТФ активирует накопление энергии в макроэргах (рис. 2). При этом активируется биосинтез нуклеиновых кислот и белка, что является основой долговременной адаптации. В процессе долговременной адаптации растет масса и увеличивается мощность внутриклеточных систем транспорта кислорода, питательных и биологически активных веществ, завершается формирование доминирующих функциональных систем, наблюдаются специфические морфологические изменения во всех органах, ответственных за адаптацию. Так, масса сердца может увеличиться на 20-Л40 %; при нормальных темпах адаптации параллельно увеличивается и капиллярная сеть сердечной мышцы.

Адаптационные перестройки, имеющие положительное биологическое значение, не служат, однако, гарантией сохранения адаптивных резервов, если сила повреждающего агента продолжает неуклонно нарастать. Активный поиск нового состояния устойчивости не приводит к полезному результату. В этом случае наступает срыв адаптации. Функциональные резервы адаптации исчерпываются (стадия истощения). Адаптация сменяется дезадаптацией. Так, форсированные нагрузки при занятиях физическими упражнениями могут привести к перенапряжению целостного организма или отдельных его систем. Эта стадия не является обязательной.

При строгом соблюдении режима работы и отдыха, рациональном сочетании средств тренировки и восстановления устойчивость к высоким спортивным нагрузкам может сохраняться в течение многих лет. Поэтому при разработке долговременной программы спортивного совершенствования в основу ее должны быть положены не внешние, привходящие факторы (например, календарь спортивных соревнований), а тщательно изученные индивидуальные и возрастные особенности становления и сохранения резервов адаптации спортсмена к физическим нагрузкам. Формирование “долговременных адаптационных реакций” протекает стадийно.

Первая стадия связана с систематической мобилизацией функциональных ресурсов организма спортсмена в процессе выполнения тренировочных программ определенной направленности с целью стимуляции механизмов долговременной адаптации на основе суммирования эффектов многократно повторяющейся срочной адаптации.

Во второй стадии на фоне планомерно возрастающих и систематически повторяющихся нагрузок происходит интенсивное протекание структурных и функциональных преобразований в органах и тканях соответствующей функциональной системы. В конце этой стадии наблюдается необходимая гипертрофия органов, слаженность деятельности различных звеньев и механизмов, обеспечивающих эффективную деятельность функциональной системы в новых условиях.

Читайте также:  Диссертация на тему «Оценка роли почвообразующего потенциала природных факторов в формировании почвенного покрова на основе геоинформационных технологий», скачать бесплатно автореферат по специальности ВАК РФ 03.02.13 - Почвоведение

Третью стадию отличает устойчивая долговременная адаптация, выражающаяся в наличии необходимого резерва для обеспечения нового уровня функционирования системы, стабильности функциональных структур, тесной взаимосвязи регуляторных и исполнительных механизмов.

Четвертая стадия наступает при нерационально построенной, обычно излишне напряженной тренировке, неполноценном питании и восстановлении и характеризуется изнашиванием отдельных компонентов функциональной системы.

Существенную роль в изучении адаптационных процессов, возникающих в сердце в ответ на спортивные тренировки, сыграли исследования, проведенные с помощью метода балансовой телерентгенографии и позволяющие дать количественную оценку наружных размеров сердца. Под путем адаптации сердца к гиперфункции мы понимаем процессы, которые преобладают в развитии адаптации.

В 1936г. Г.Ф. Ланг писал о том, что гипертрофия и тологенная дилатация спортивного сердца касаются в первую очередь путей оттока, т.е. межжелудочковой перегородки.

Различия морфологических показателей наиболее существенны при сопоставлении результатов Эхо КГ-исследований спортсменов, тренирующих выносливость и силу, а не спортсменов, занимающихся нагрузками динамического и статического характера. Дело в том, что нагрузки динамического характера, но направленные преимущественно на развитие такого физического качества как быстрота, не дают столь отчетливых адаптационных сдвигов морфометрических показателей сердца, какие удается наблюдать у спортсменов, развивающих выносливость.

Физические нагрузки динамического характера сопровождаются увеличением нагрузки на сердце дополнительным объемом и включением механизма гетерометрической регуляции.

Увеличение растяжимости сердечной мышцы у спортсменов, как показано Ф.З. Меерсоном (1975), связано с увеличением мощности кальциевого насоса и более полным удалением кальция из миофибрилл в СПР. Растяжимость миокарда увеличивается благодаря повышению адренореактивности сердца при адаптации к физическим нагрузкам и, в частности, увеличению расслабляющего воздействия на сердце норадреналина.

Нагрузки статического характера сопровождаются увеличением нагрузки на сердце дополнительным сопротивлением, а значит, увеличением напряжения миокарда, включением механизма гомеостатической регуляции.

Важнейший вклад в развитие представлений об адаптационных сдвигах, происходящих в системе кровообращения при статических нагрузках, вносят экспериментальные исследования и наблюдения за добровольцами. Эти исследования позволяют придти к заключению, что при таких тренировках функциональное состояние синусового узла и характер регуляции водителя ритма существенно не меняются.

При нагрузках статического характера повышается уровень давления в полости желудочка, а следовательно, и напряжения его стенок. В условиях не меняющегося притока снижение напряжения стенок становится возможным лишь при условии их утолщения, что и обнаруживается у штангистов.

Сердце, адаптированное к физической нагрузке, обладает высокой сократительной способностью. Но оно сохраняет высокую способность к расслаблению в диастоле при высокой частоте сокращений, что обусловлено улучшением процессов регуляции обмена в миокарде и соответствующим увеличением его массы (гипертрофией сердца). Гипертрофия — нормальный морфологический феномен усиленной сократительной деятельности (гиперфункции) сердца. Если плотность капиллярного русла на единицу массы сердца при этом повышается или сохраняется на уровне, свойственном нормальному миокарду, гипертрофия происходит в обычных физиологических рамках. Сердечная мышца не испытывает недостатка в кислороде при напряженной работе. Более того, функциональная нагрузка на единицу сердечной массы падает. Следовательно, и тяжелая физическая нагрузка будет переноситься сердцем с меньшим функциональным напряжением.

Истощение источников энергии при напряженных нагрузках стимулирует синтез белковых структур клеточных элементов: как сократительных, так и энергетических (митохондриальных). Если истощение источников энергии превышает физиологические нормы, может наступить перенапряжение, срыв адаптации. В нормально развитом сердце на 1 мм3 мышечной массы в покое раскрыты 2300 капилляров. При мышечной работе раскрываются дополнительно около 2000 капилляров. Долговременная адаптация обеспечивается усилением биосинтетических процессов в сердечной мышце и увеличением ее массы. При периодических физических нагрузках адаптация сердца растягивается во времени, периоды отдыха от нагрузок приводят к сбалансированному увеличению структурных элементов сердца. Масса сердца увеличивается в пределах 20-40%. Капиллярная сеть растет пропорционально увеличивающейся массе. Тренированное, умеренно гипертрофированное сердце в условиях относительного физиологического покоя имеет пониженный обмен, умеренную брадикардию, сниженный минутный объем. Оно работает на 15-20% экономичнее, чем нетренированное. При систематической мышечной работе в сердечной мышце тренированного сердца снижается скорость гликолитических процессов: энергетические продукты расходуются более экономно.

Морфологические перестройки сердца проявляются в увеличении как мышечной массы, так и клеточных энергетических машин — митохондрий. Увеличивается также масса мембранных систем. Иначе говоря, чувствительность сердца к симпатическим влияниям, усиливающим его функции, при мышечной работе повышается. Одновременно совершенствуются и механизмы экономизации: в покое и при малоинтенсивной нагрузке сердце работает с низкими энергозатратами и наиболее рациональным соотношением фаз сокращения.

Если сократительная масса сердца увеличивается на 20-40%, то функциональная нагрузка на единицу массы уменьшается на соответствующую величину. Это один из наиболее надежных и эффективных механизмов сохранения потенциальных ресурсов сердца.

Как свидетельствует практический опыт, юные спортсмены, имеющие физиологически гипертрофированное сердце, хорошо адаптируются к физическим нагрузкам умеренной мощности. При выполнении нагрузки предельной мощности у них отчетливо проявляется гипердинамический синдром. Восстановительные процессы отличаются высокой скоростью. Полезная производительность сердца возрастает по сравнению с нетренированным примерно в два раза. Между тем нагрузка на единицу массы тренированного сердца при максимальной работе возрастает до 25%. Иначе говоря, перегрузка такого сердца практически исключается даже при весьма напряженной мышечной работе, характерной для современного спорта.

Увеличение ЧСС и сократительной способности сердца — естественные адаптивные реакции на нагрузку. Не случайно ЧСС сохраняет свою значимость как показатель адаптации сердца при использовании любых, самых современных функциональных проб с физической нагрузкой. Мышечная работа требует повышенного притока кислорода и субстратов к мышцам. Это обеспечивается увеличенным объемом кровотока через работающие мышцы. Поэтому увеличение минутного объема кровотока при работе — один из наиболее надежных механизмов срочной адаптации к динамической нагрузке. В нетренированном сердце взрослого человека резервы повышения ударного объема крови исчерпываются уже при ЧСС 120-130 уд /мин. Дальнейший рост минутного объема происходит только за счет ЧСС. По мере роста тренированности расширяется диапазон ЧСС, в пределах которого ударный объем крови продолжает увеличиваться. У высокотренированных спортсменов и детей он продолжает нарастать и при ЧСС 150-160 уд /мин.

В самой сердечной мышце срочные адаптацтонные изменения проявляются в мобилизации энергетических ресурсов. Первичными субстратами окисления в сердечной мышце служат жирные кислоты, глюкоза, в меньшей степени — аминокислоты. Энергия их окисления аккумулируется митохондриями в виде АТФ, а затем транспортируется к сократительным элементам сердца.

адаптация организм физическая нагрузка

Первичной ответной реакцией системы крови на физическую нагрузку являются изменения в составе форменных элементов крови. Наиболее отчетливы сдвиги в так называемой белой крови — лейкоцитах. Миогенный лейкоцитоз характеризуется преимущественным увеличением зернистых лейкоцитов в общем кровотоке. Одновременно происходит разрушение части лейкоцитов: при напряженной физической нагрузке резко уменьшается число эозинофилов. Структурный материал, образующийся при их распаде, идет на пластические нужды, на восстановление и биосинтез клеточных структур.

Регулярные повторные физические нагрузки того или иного характера приводят к активации функциональных систем, принимающих наибольшее участие в обеспечении адаптации к этим нагрузкам.

Повышение уровня адаптации происходит на основе совершенствования двигательных реакций, формирование устойчивых связей между опорно-двигательным аппаратом, системой кровообращения и дыхания.

Для системы кровообращения функциональный резерв можно представить как отношение ее максимальной производительности к уровню относительного физиологического покоя. Расширение функциональных резервов, достигается на стадии устойчивой адаптации к нагрузкам, идет по двум направлениям и обеспечивается за счет экономизации функций системы в условиях покоя и при умеренных нагрузках и максимальной производительности ее при выполнении предельных нагрузок.

Увеличение мощности систем, ответственных за энергообеспечение, сочетается с повышением эффективности использования кислорода и способствует увеличению максимального количества работы на единицу массы миокарда. Повышение производительности на стадии устойчивой адаптации сочетается с экономизацией функции сердца в состоянии покоя и при умеренной нагрузке.Помимо изменений ЧСС в процессе адаптации к нагрузкам динамического характера, существенно изменяется функция синусового узла, что отражается изменениями волновой структуры ритма сердца.

Средние значения УО у спортсменов в покое, рассчитанные без учета уровня спортивного мастерства, стажа и направленности тренировочного процесса, либо несколько ниже, либо не отличаются от таковых у лиц, не занимающихся спортом. Величины УО имеют широкий диапазон индивидуальных колебаний. Это требует поиска новых подходов к оценке показателей центральной гемодинамики у здоровых лиц, в том числе и у спортсменов. В этом плане перспективным является представление о типах кровообращения у здоровых лиц.

В процессе тренировок к выполнению кратковременной работы максимальной мощности, когда к организму спортсмена предъявляют требования постоянно поддерживать систему кровообращения в состоянии «повышенной готовности», совершенствуются преимущественно механизмы срочной адаптации системы кровообращения. Это, в свою очередь, приводит к преимущественному включению во время выполнения нагрузки хронотропного механизма обеспечения и поддержания необходимого уровня кровообращения.

Все сказанное об экономизации функции сердца в покое в полной мере относится к спортивным тренировкам лишь той направленности, в которых преобладают динамические нагрузки, прежде всего тренировки выносливости. В тех же случаях, где преобладают статические нагрузки, признаки экономизации функции выражены крайне слабо либо вовсе не выявляются.

Статические нагрузки не способствуют совершенствованию и экономизации функции системы кровообращения в состоянии покоя. Об этом же свидетельствует и изложенные выше данные о физиологии мышечной работе статического характера не меняется потребление кислорода.

Изучение сердечного ритма у спортсменов циклических видов спорта необходимо для понимания физиологических механизмов адаптации сердца к физическим нагрузкам в условиях его гиперфункции и для правильной клинико-прогностической оценки полученных данных. Согласно литературным данным у спортсменов циклических видов спорта часто наблюдаются изменения в состоянии красной крови, связанные со снижением количества эритроцитов, уровня гемоглобина и железа в сыворотке крови, что послужило основанием для возникновения термина «спортивная анемия» и вместе с тем не нашло однозначного толкования. Различные исследования выявили типичные изменения изучаемых показателей у спортсменов циклических видов спорта. По данным ЭКГ-обследования, у 63,5% мужчин бегунов-стайеров обнаружены аритмии различного характера. У некоторых легкоатлетов отмечено сочетание нескольких форм аритмии. Чаще встречались аритмии, связанные с нарушением образования импульса: резко выраженная брадикардия (18,9%), резкая синусовая аритмия (24%), миграция источника ритма (26%) по одному случаю узлового ритма и экстрасистолии. Нарушение проведения импульса найдено у трех спортсменов: у двоих — с атриовентрикулярной блокадой I степени и у одного — с переходящей блокадой правой ножки пучка Гиса.

Читайте также:  Курсовая работа банкет свадьба

У многих из этих спортсменов отмечалось снижение содержания эритроцитов до 3,56 млн, гемоглобина — до 10,7-12,6 г%, цветового показателя — ниже 0,70 ед., железа в сыворотке крови — ниже 14,3 мкМ/л. Такая картина характерна для железодефицитной анемии.

У других спортсменов выявлялось снижение количества эритроцитов при сравнительно большой их насыщенности гемоглобином, при этом цветовой показатель оставался высоким, достигая 1,10-1,20 ед. Такая картина бывает при фолиево-дефицитной анемии. Обе они объединены у спортсменов в так называемую спортивную анемию.

Наблюдения показали, что у трех бегунов-стайеров, двух пловцов, четырех спортсменов-ориентировщиков с содержанием гемоглобина в крови 10-12 г% пороговая скорость была на 18% ниже по сравнению со спортсменами без явлений анемии. У гребцов-академистов истощающие эргометрические нагрузки сопровождались снижением уровня гемоглобина до 11-12 г% и дальнейшим снижением пороговой мощности. Обычно считается, что любое падение уровня гемоглобина или гематокрита отрицательно влияет на работоспособность, поскольку замедляется доставка кислорода к тканям. Наблюдаемое нами снижение содержания железа в сыворотке крови обычно сопровождалось неадекватным ростом или резким падением концентрации мочевины в крови в 56% и симптомами утомления в 63% случаев, что позволяло расценивать эти явления как признаки срыва адаптации. Часто при этом отмечались явления гиповитаминоза С и В1. Снижение экскреции витамина С после тяжелых тренировок и соревнований зимой наблюдалось у 34%, у 57% обследованных спортсменов это снижение отмечалось весной, аналогичные показатели падения экскреции тиамина составили соответственно 23 и 39%. Эти данные подчеркивают важность сбалансированного питания спортсменов. Среди обследованных женщин-спортсменок аритмии обнаружены в 50% случаев, причем, как и у мужчин-спортсменов, они в основном связаны с нарушением образования импульса. Так, у четырех из обследуемых легкоатлеток наблюдалась миграция источника ритма, у двоих — резкая брадикардия, у остальных — резкая синусовая аритмия. Зарегистрировано по одному случаю предсердной экстрасистолии, атриовентрикулярной блокады I степени и синдром укороченного PQ.

В специальных сериях исследований изучалось влияние на функциональное состояние организма пловцов так называемых ударных тренировок, отличающихся от обычных повышенным объемом и интенсивностью. Результаты сравнительного изучения динамики свидетельствовали о значительной вариативности реакции сердечно-сосудистой системы у отдельных спортсменов на предложенный объем и интенсивность тренировочной работы, что привело к существенному увеличению случаев ЭКГ-признаков нарушения реполяризации конечной части желудочкового комплекса, нарушения сердечного ритма (у 62% обследованных — в конце тренировочного сбора против 38,8% — в начале). При этом у юношей-пловцов степень синусовой аритмии _ R-R по средним значениям возросла с 0,25±0,5 до 0,36±0,04 с. Отмечались случаи выраженной синусовой брадикардии (42-43 уд/мин), резко выраженной синусовой аритмии, когда индивидуальные значения _ R-R составили 0,45-0,56 с, отмечено появление узлового ритма, увеличение количества случаев миграции источника ритма.

Естественно, что однозначного толкования обнаруженных изменений ЭКГ не может быть ввиду неоднородности как причин их возникновения, так и механизмов развития. Большинство регистрируемых у спортсменов аритмий условно относят к так называемым малым аритмиям, поскольку они встречаются у здоровых людей и не сопровождаются никакими клиническими проявлениями.

Отчетливое преобладание в группе бегунов-стайеров (как у мужчин, так и у женщин) нарушений ритма, связанных с функцией автоматизма, согласно современным представлениям объясняют чрезмерным угнетением активности синусового узла и объединяют в ЭКГ-синдром подавленного синусового узла (СПСУ).

Установлено, что при прекращении спортивных тренировок возможно обратное развитие аритмий СПСУ, что свидетельствует о сохранении высоких функциональных способностей синусового узла.

У спортсменов с СПСУ значительно чаще встречаются отклонения от состояния здоровья, в том числе ДМФП.

Из семи спортсменов с нарушением реполяризации I степени у пятерых эти изменения были на фоне синусовой брадикардии, а у двоих сочетались с миграцией источника ритма. У обоих спортсменов с ЭКГ-признаками ДМФП II степени отмечена миграция источника ритма — в одном случае на фоне резкой брадикардии, в другом — в сочетании с атриовентрикулярной блокадой I степени. После физической нагрузки отмеченные изменения сохранялись и углублялись. Это обстоятельство позволило расценивать подобные отклонения на ЭКГ как проявление перенапряжения миокарда, что явилось основанием для внесения коррективов в тренировочный процесс.

Таким образом, почти у половины спортсменов с нарушением реполяризации миокарда (44%) отмечено нарушение сердечного ритма в виде миграции источника ритма, что говорит о клинической значимости этого вида аритмии как проявления адаптации сердца к физическим нагрузкам.

Как правило, изменения лабильных компонентов массы тела демонстрируют постепенное возрастание мышечной массы и снижение жировой массы при подходе к основным периодам подготовки, то есть к повышению «пика» формы. При снижении адаптации организма спортсменов к физическим нагрузкам оба эти компонента массы тела могут снижаться, или снижается мышечная масса, увеличивается жировая масса, при этом падает работоспособность. Эти изменения часто сочетаются со снижением уровня показателей красной крови, железа в сыворотке крови и неадекватным увеличением или резким снижением концентрации мочевины в сыворотке крови.

Полученные данные свидетельствуют о том, что процесс адаптации организма спортсменов, специализирующихся в циклических видах спорта, представляют собой сложное явление, затрагивающее различные уровни функциональной интеграции. При этом в совокупности адаптационных процессов, звеньев и механизмов адаптации на фоне повышающихся требований к организму спортсменов весьма часто возникают ситуации локального исчерпания адаптационного резерва, что вызывает отраженное напряжение смежных, и прежде всего регуляторных, звеньев адаптационного процесса. Перспектива развития процесса зависит как от значимости звена, так и от компенсаторных возможностей других звеньев.

В приведенных исследованиях рассмотрены пять звеньев в системе адаптационных процессов в организме спортсменов циклических видов спорта: сердечный ритм и его нарушения, уровень гемоглобина в крови, содержание железа в сыворотке крови, содержание мочевины в сыворотке, мышечный и жировой компоненты массы тела.

Сочетание нарушений сердечного ритма, снижение уровня гемоглобина крови ниже 12 г% у мужчин и ниже 10 г% у женщин, снижение уровня железа и неадекватное повышение или резкое снижение концентрации мочевины в сыворотке крови, снижение уровня лабильных компонентов массы тела сопровождаются падением специальной работоспособности (пороговой скорости или мощности), свидетельствуют о срыве адаптации и требуют комплекса восстановительных и терапевтических мероприятий. Очень важный фактор при этом — полноценное питание с включением в пищу достаточного количества витаминов, микроэлементов, минеральных солей.

Бег — естественная локомоция, в которой фаза одиночной опоры чередуется с фазой полета. Относится к видам спорта с циклической структурой движения.

По технике движений наиболее сложен бег на короткие дистанции. При совершенной технике спринтерского бега энерготраты спортсмена значительно меньше, чем при нерациональной технике Особенно сложна координация движений при барьерном беге.

Короткие, средние, длинные и сверхдлинные дистанции легкоатлетического бега — типичные примеры циклической работы максимальной, субмаксимальной, большой и умеренной мощности.

Особенности работы максимальной мощности наиболее ярко проявляются на дистанции 100 м, субмаксимальной — на дистанциях 800 — 1500 м, большой — на дистанции 5000 м и умеренной — на марафонской дистанции. Остальные дистанции являются как бы промежуточными. В зависимости от скорости бега они могут быть отнесены либо к одной, либо к другой зоне мощности. В действительности бег на всех дистанциях выполняется с переменной скоростью, а следовательно, и с изменяющейся мощностью, в некоторых случаях с переходом из одной зоны в другую.

ЦНС. В процессе тренировки у бегуна формируются и закрепляются относительно однообразные динамические стереотипы нервных процессов, которые лежат в основе техники бега. При беге по гладкой дорожке структура движений изменяется лишь при ускорениях, беге по виражу и финишном броске.

Анализаторы. Сравнительно однообразная двигательная деятельность бегуна не предъявляет каких-либо особых требований к функциям анализаторов. Однако в условиях соревнований роль их повышается. В этих условиях бегуну необходимо быстро и точно воспринимать действия соперников и всю обстановку спортивной борьбы и тонко регулировать мышечные усилия. Значение зрительной и проприоцептивной рецепции увеличивается также при беге по пересеченной местности и, особенно, при беге с барьерами.

Двигательный аппарат. При беге на разные дистанции предъявляются различные требования к мышцам. Эффективность скоростного бега зависит главным образом от морфофунционального состояния опорно-двигательного аппарата. Мышцы спринтера должны обладать значительной силой, обеспечивающей мощность отталкивания от грунта, а также способностью очень быстро сокращаться (что определяет «взрывные» качества мышцы) и быстро расслабляться (что позволяет более эффективно использовать скоростно-силовые качества и достигать наибольшей скорости бега). У спортсменов высокого класса эти способности более выражены, чем у менее квалифицированных. Спортсмены, отличающиеся хорошими «взрывными» качествами и относительно низкой скоростью расслабления мышц, как правило, опережают своих соперников на первой половине дистанции, но затем теряют достигнутое преимущество. У них быстрее развивается утомление и менее интенсивно происходит восстановление. Скорость сокращения и расслабления мышц определяет темп движений спринтера.

Мышцы спринтера должны быть адаптированы главным образом к работе в анаэробных условиях. При этом интенсивность восстановления АТФ играет решающую роль для поддержания скорости на протяжении всей дистанции.

Оцените статью
VIPdisser.ru