- 1. Неметаллические материалы
- 1.1 Полимеры
- 1.2 Стекло
- 1.3 Керамика
- 2. Композиционные материалы
1. Неметаллические материалы
Полимерами называются высокомолекулярные соединения с большой молекулярной массой (>104), у которых большие молекулы (макромолекулы) состоят из одинаковых групп атомов – звеньев.
Если макромолекула состоит из звеньев различной природы, то материал называется сополимером. Введение в полимер звеньев другой природы вызвано стремлением получить материал с требуемыми свойствами.
Макромолекулы полимеров могут иметь линейную, разветвленную или сетчатую (сшитую) структуру (рис. 32). Внутри макромолекулы между атомами во всех трех случаях действуют прочные ковалентные связи.
У полимеров с линейной и разветвленной структурой между макромолекулами чаще всего действуют силы притяжения отрицательных и положительных частиц (силы Ван-дер-Ваальса), энергия которых в десятки раз меньше внутренних связей. У полимеров с сетчатой структурой между макромолекулами действуют главным образом прочные ковалентные связи.
Рис. 32. Структура макромолекул: а – линейная; б – разветвленная; в – сетчатая (сшитая)
Широко распространенный полимер – полиэтилен. Это насыщенный линейный полимерный углеводород (полиолефин), получаемый полимеризацией газа этилена СН2=СН2. У него длинные линейные молекулы:
где «—» обозначает ковалентные связи между атомами углерода (рис. 33).
Рис. 33. Макромолекула полиэтилена и ее звено
Основным источником получения этилена являются продукты высокотемпературной переработки нефти. Полиэтилен представляет собой массу белого цвета (тонкие листы прозрачны и бесцветны) плотностью 0,94–0,97 г/см3, размягчается при нагревании до 80 °С и плавится при 100–120 °С.
Характерная особенность полиэтилена – морозостойкость, способность сохранять эластичность до –70–(80) °С. Полиэтилен хорошо противостоит действию большинства кислот, щелочей и растворителей, не чувствителен к удару (амортизатор).
Полимеры различают по их реакции на повторные нагревы. Полимеры с линейной и разветвленной структурой макромолекул относятся к термопластичным, а полимеры с сетчатой структурой – к термореактивным.
В различных отраслях промышленности и в быту используют композиции, называющиеся пластическими массами (пластмассами), в которых полимеры выполняют роль связующего. В пластмассы также входят наполнители, пластификаторы, отвердители, красители, стабилизаторы и другие вещества.
Пластмассы на основе термопластичных полимеров называются термопластами, а на основе термореактивных – реактопластами.
Термопласты (полиэтилен, полистирол, капрон и др.) при нагреве расплавляются до высоковязкой жидкости, при охлаждении они восстанавливают свои свойства. Такое поведение объясняется тем, что при нагреве разрушаются слабые межмолекулярные связи, а ковалентные связи сохраняются. Это обстоятельство позволяет перерабатывать термопласты неоднократно. Термопластичные полимеры обладают повышенной пластичностью, но малой теплостойкостью, они растворимы в соответствующих растворителях.
Реактопласты при повышении температуры не размягчаются, но при достижении достаточно высокой температуры разрушаются. Они не растворимы и могут только набухать в растворителях. Наиболее распространены реактопласты на основе фенолоформальдегидных, полиэфирных, эпоксидных и карбамидных смол.
Полимеры в зависимости от своей природы и условий затвердевания могут иметь структуру с преобладающим содержанием аморфной или кристаллической фазы. В аморфном состоянии макромолекулы в основном расположены хаотически. При этом имеются небольшие участки с упорядоченным расположением макромолекул. Протяженность таких участков мала и соизмерима с длиной макромолекулы. Типичным представителем аморфного материала является винипласт (стабилизированный поливинилхлорид). В кристаллическом состоянии макромолекулы расположены в основном упорядоченно. Объем упорядоченных участков может достигать до 90 %. В кристаллическом состоянии увеличиваются плотность материала и его механические характеристики. Например, для фторопласта-4 повышение степени кристалличности с 40 до 65 % вызывает увеличение модуля упругости с 470 до 850 МПа, т. е. в 1,8 раза.
При переработке, эксплуатации и хранении полимер подвергается воздействию теплоты, света, кислорода, влаги, химических соединений, механических нагрузок, электрических полей и др., в результате которых изменяются его свойства. Необратимое изменение свойств полимера во времени под влиянием внешней среды называется старением.
При старении могут произойти разрыв основной молекулярной цепи и распад полимера на низкомолекулярные соединения. Это явление называется деструкцией. Причинами деструкции являются поступление избыточной энергии за счет теплоты, света, механических нагрузок и др., а также химические изменения под действием кислорода или других окислителей.
Для борьбы со старением в полимеры вводят стабилизаторы, которые, вступая в реакцию, препятствуют развитию процессов окисления. Например, введение в полиэтилен 2 % сажи повышает устойчивость его против старения в 30 раз.
Макромолекулы в полимерном веществе не упакованы плотно, и мерой плотности упаковки является так называемый свободный объем, т. е. разность между фактическим удельным объемом вещества и теоретическим удельным объемом при самой плотной упаковке. При нагреве свободный объем увеличивается. В зависимости от свободного объема полимерное вещество находится в одном из физических состояний: стеклообразном, высокоэластичном, вязкотекучем. Переходы из одного состояния в другое происходят без выделения или поглощения теплоты. Температуры переходов называются температурами стеклования tCT и текучести tTEK.
Стекло представляет собой изотропное твердое вещество, образующееся при охлаждении расплава компонентов, среди которых хотя бы один является стеклообразующим. Стеклообразующими являются оксиды SiO2, B2O3, Р2О5, а также некоторые бескислородные соединения мышьяка, селена, теллура.
Рис. 34. Строение кварцевого стекла
Основную массу промышленных стекол составляют силикатные стекла с добавками других оксидов. По сравнению с кварцевым стеклом они размягчаются при более низких температурах и легче перерабатываются в изделия.
В силикатных стеклах атомы соединяются ковалентно-ионными связями. В объемную сетку кроме кремния и кислорода входят также алюминий, титан, германий, бериллий; ионы щелочных и щелочно-земельных металлов размещаются в ячейках стекол, что приводит к изменению их свойств, в том числе и цвета, и являются причиной структурной неоднородности.
Из стекол специального состава при помощи контролируемой кристаллизации получают ситаллы, или стеклокристаллические материалы. Структура ситаллов представляет собой смесь очень мелких (0,01–1 мкм), беспорядочно ориентированных кристаллов (60–95 %) и остаточного аморфного стекла (5–40 % ). Такая структура создается в стеклянных изделиях после двойного отжига (первый нужен для формирования центров кристаллизации, второй – для выращивания кристаллов на готовых центрах). Для образования кристаллов в стекла вводят Li2О, TiO2, Al2O3 и другие соединения.
Керамикой называются материалы, полученные при высокотемпературном спекании порошков различных минералов. При нагреве исходные вещества взаимодействуют между собой, образуя кристаллическую и аморфную фазы. Керамика представляет собой пористый материал, содержащий ковалентные или ионные кристаллы – сложные оксиды, карбиды или твердые растворы на их основе. Аморфная фаза является стеклом, которое по своему химическому составу отличается от кристаллов. Керамический материал содержит одну или несколько кристаллических фаз, отдельные виды керамики совсем не имеют стекла в своей структуре. Как правило, керамика имеет поликристаллическую структуру с прослойками стекла и с беспорядочным расположением зерен и поэтому однородна по свойствам.
Характерной особенностью керамических материалов является хрупкость. Прочность керамик тем выше, чем мельче кристаллы и меньше пористость. Например, плотная микрокристаллическая керамика на основе Al2O3 с размерами зерен 1–5 мкм в 5–6 раз прочнее обычной. Изделия из плотной мелкозернистой керамики – тонкой керамики – получают по более сложной технологии, и поэтому они дороги. Пористую керамику используют в качестве огнеупорных материалов, фильтров, диэлектриков в электротехнике. Более прочную плотную керамику применяют для некоторых деталей машин.
2. Композиционные материалы
Композиционные материалы – искусственно созданные материалы, которые состоят из двух или более компонентов, различающихся по составу и разделенных выраженной границей, и которые имеют новые свойства, запроектированные заранее.
Компоненты композиционного материала различны по геометрическому признаку. Компонент, непрерывный во всем объеме композиционного материала, называется матрицей. Компонент прерывистый, разделенный в объеме композиционного материала, называется наполнителем (арматурой). Матрица придает требуемую форму изделию, влияет на создание свойств композиционного материала, защищает наполнитель от механических повреждений и других воздействий среды.
Классификация композиционных материалов
По геометрии наполнителя композиционные материалы подразделяются на три группы (рис. 35):
- с нульмерными наполнителями, размеры которых в трех измерениях имеют один и тот же порядок;
- с одномерными наполнителями, один из размеров которых значительно превышает два других;
- с двухмерными наполнителями, два размера которых значительно превышают третий.
Рис. 35. Типы армирующих компонентов: порошковые (а), дискретные (б) и непрерывные (в) волокна
По схеме расположения наполнителей выделяют три группы композиционных материалов: с одноосным (линейным), двухосным (плоскостным) и трехосным (объемным) расположением армирующего наполнителя.
По составу композиционные материалы разделяются на четыре группы по природе содержащегося компонента:
- из металлов или сплавов;
- неорганических соединений оксидов, карбидов, нитридов и др.;
- неметаллических элементов, углерода, бора и др.;
- органических соединений эпоксидных, полиэфирных, фенольных и др.
Свойства композиционных материалов зависят не только от физико-химических свойств компонентов, но и от прочности связи между ними. Максимальная прочность достигается, если между матрицей и наполнителем происходит образование твердых растворов или химических соединений.
В композиционных материалах с нульмерным наполнителем наибольшее распространение получила металлическая матрица. Композиции на металлической основе упрочняются равномерно распределенными дисперсными частицами различной дисперсности. Такие материалы отличаются изотропностью свойств. В них матрица воспринимает всю нагрузку, а дисперсные частицы наполнителя препятствуют развитию пластической деформации. Эффективное упрочнение достигается при содержании 5–10 % частиц наполнителя. Армирующими наполнителями служат частицы тугоплавких оксидов, нитридов, боридов, карбидов. Дисперсионно упрочненные композиционные материалы получают методами порошковой металлургии или вводят частицы армирующего порошка в жидкий расплав металла или сплава.
Промышленное применение нашли композиционные материалы на основе алюминия, упрочненные частицами оксида алюминия (Al2O3). Их получают прессованием алюминиевой пудры с последующим спеканием (САП).
В композиционных материалах с одномерными наполнителями упрочнителями являются одномерные элементы в форме нитевидных кристаллов, волокон, проволоки, которые скрепляются матрицей в единый монолит. Важно, чтобы прочные волокна были равномерно распределены в пластичной матрице. Для армирования композиционных материалов используют непрерывные дискретные волокна с размерами в поперечном сечении от долей до сотен микрометров.
Материалы, армированные нитевидными монокристаллами, были созданы в начале семидесятых годов ХХ века для авиационных и космических конструкций. Способом получения нитевидных кристаллов является выращивание их из перенасыщенного пара. Для производства особо высокопрочных нитевидных кристаллов оксидов и других соединений осуществляется направленный рост кристаллов из парообразного состояния через промежуточную жидкую фазу (по П–Ж–К-механизму).
Армирование сопл ракет из порошков вольфрама и молибдена производят кристаллами сапфира как в виде войлока, так и отдельных волокон, в результате этого удалось удвоить прочность материала при температуре 1 650 °С. Армирование пропиточного полимера стеклотекстолитов нитевидными волокнами увеличивает их прочность. Армирование литого металла снижает его хрупкость в конструкциях. Перспективно упрочнение стекла неориентированными нитевидными кристаллами.
Для армирования композиционных материалов применяют металлическую проволоку из разных металлов: стали разного состава, вольфрама, ниобия, титана, магния – в зависимости от условий работы. Для армирования легких металлов применяются волокна бора, карбида кремния. Особенно ценными свойствами обладают углеродистые волокна, их применяют для армирования металлических, керамических и полимерных композиционных материалов.
Эвтектические композиционные материалы – сплавы эвтектического или близкого к эвтектическому состава, в которых упрочняющей фазой выступают ориентированные кристаллы, образующиеся в процессе направленной кристаллизации. В отличие от обычных композиционных материалов эвтектические получают за одну операцию. Направленная ориентированная структура может быть получена на уже готовых изделиях. Форма образующихся кристаллов может быть в виде волокон или пластин. Так получают композиционные материалы на основе алюминия, магния, меди, кобальта, титана, ниобия и других элементов.
Полимерные композиционные материалы служат связующими для арматуры, которая может быть в виде волокон, ткани, пленок, стеклотекстолита. Формирование полимерных композиционных материалов осуществляется прессованием, под давлением, экструзией, напылением. Широкое применение находят смешанные полимерные композиционные материалы, куда входят металлические и полимерные составляющие, которые дополняют друг друга по свойствам. Например, подшипники, работающие в условиях сухого трения, изготовляют из комбинации фторопласта и бронзы, что обеспечивает самосмазываемость и отсутствие ползучести.
Созданы материалы на основе полиэтилена, полистирола с наполнителями в виде асбеста и других волокон, обладающие высокими прочностью и жесткостью.
Композиционные материалы на неметаллической основе
К данным композиционным материалам относят материалы с полимерной, углеродной и керамической матрицей. В качестве упрочнителей применяют высокопрочные и высокомодульные углеродные и борные, стеклянные и органические волокна в виде нитей, жгутов, лент нетканых материалов.
Композиционные материалы на полимерной основе.
По сравнению с композиционными материалами на металлической основе эти материалы отличает хорошая технологичность, низкая плотность и в ряде случаев более высокие удельные прочность и жесткость, они имеют высокую коррозионную стойкость, хорошие теплозащитные и амортизационные свойства.
Однако, для большинства композиционных материалов с неметаллической основой характерны следующие недостатки: низкая прочность связи волокна с матрицей, резкая потеря прочности при повышении температуры выше 100-2000С, плохая свариваемость.
Различные группы композитов, армированные однотипными волокнами, имеют специальные названия, данные им по названию волокна. Композиции с углеродными волокнами называются углеволокнитами, с борными – бороволокнитами, стеклянными – стекловолокнитами, органическими — органоволокниты.
Следует отметить, что из-за быстрого отверждения и низкого коэффциента диффузии в неметаллической матрице, в композиционных материалах нет переходного слоя между компонентами. Связь между волокнами и матрицей носит адгезионный характер, т.е. осуществляется путем молекулярного взаимодействия.
По сравнению с другими полимерами, применяемыми в качестве матриц, эпоксидные обладают более высокими механическими свойствами в интервале температур от -60 до 1800С, что и обеспечивает композитам более высокие прочностные характеристики при сжатии и сдвиге.
Но эпоксидные матрицы уступают феноло-формальдегидным и особенно полиимидным в теплостойкости.
Одним из способов улучшения свойств композиционных материалов является увеличение жесткости матрицы с помощью введения в их структуру ионов металлов, которые усиливают взаимосвязь между полимерными молекулами.
Влияние добавок Ba2+ и Ni2+ на свойства
Примечание. Значения модуля упругости и разрушающего напряжения определены при испытании на изгиб.
Стекловолокниты – содержат в качестве наполнителя стеклянные волокна. В настоящее время выпускают стеклопластики с ориентированным и неориентированным (хаотичным) расположением волокон. Стекловолокниты имеют самую высокую прочность и удельную прочность. Их достоинством является недефицитность и низкая стоимость упрочнителя, по удельной жесткости они превосходят легированные стали.
Углеволокниты – это полимерные композиционные материалы, содержащие в качестве наполнителя углеродные волокна. Углеволокниты обладают низкими теплопроводностью и электропроводностью, но их теплопроводность в 1,5-2 раза выше, чем у стекловолокнитов. Они имеют малый и стабильный коэффициент трения и обладают хорошей износостойкостью.
К недостаткам относят низкую прочность при сжатии и межслойном сдвиге.
Бороволокнитыхарактеризуются высоким временным сопротивлением пределами прочности при сжатии и сдвиге, твердостью и модулем упругости.
Свойства бороволокнитов зависят не только от свойств волокон и их объемного содержания, но и в большей степени от их геометрии и диаметра. Так, ячеистая структура волокна обеспечивает высокую прочность при сдвиге и срезе. Большой диаметр волокон и высокий модуль упругости придают устойчивость бороволокниту и способствуют повышению прочности при сжатии.
Органоволокниты– обладают малой массой, сравнительно высокими удельными прочностью и жесткостью, стабильны при действии знакопеременных нагрузок, резкой смене температуры. Они устойчивы в агрессивных средах и влажном климате, имеют низкие электро- и теплопроводность.
Недостатком этих материалов является сравнительно низкая прочность при сжатии и высокая ползучесть.
Органоволокниты применяют в качестве изоляционного и конструкционного материала в электро- и радиопромышленности, авиатехнике, автомобилестроении, из них изготавливают трубы, емкости для реактивов, покрытия судов и др. изделия.
Свойства композиционных материалов с полимерной матрицей приведены в таблице 10.6.
Таблица 10.6 массой, сравнительно высокими удельными прочностью и жесткостью, стабильны при действии знакопеременннию прочности при сжа
Свойства одноосно-армированных композиционных материалов
с полимерной матрицей.
Керамические композиционные материалы–это материалы, в состав которых входят керамическая матрица и металлические или неметаллические наполнители. В качестве матриц используют силикатные (SiO2), алюмосиликатные (Al2O3-SiO2), алюмоборосиликатные (Al2O3— B2O3 SiO2) и другие стекла, тугоплавкие оксиды (BeO, Al2O3, Zr O2 и т.д.), нитрид (Si3Nu), бориды (TiB2, ZrB2) и карбиды (SiC, TiC).
Керамические композиты на основе карбидов и оксидов с добавками металлического порошка (< 50% (об.)) называются керметами. Они не нашли широкого применения из-за высокой хрупкости.
Для армирования композиционных материалов используют металлическую проволоку из жаропрочной стали, вольфрама, молибдена, а также неметаллические волокна (углеродные, керамические). Ориентация волокон в зависимости от условий нагружения может быть направленный или хаотичной.
Металлический каркас из тугоплавких металлов и электропрочных сталей имеет целью создать пластичный каркас, предохраняющий композит от разрушения. Ударная вязкость и термостойкость керамических композитов при увеличении содержания волокна не более чем на 25% повышаются.
Применяются керамические композиционные материалы при высоких температурах для изготовления ответственных тяжелонагруженных изделий (высокотемпературные подшипники уплотнений, направляющие и рабочие лопатки газотурбинных двигателей и т.д.).
Углерод-углеродные композиционные материалы представляют собой углеродную матрицу, армированную углеродными волокнами или тканями. Одинаковая природа и близкие физико-химические свойства обеспечивают прочную связь волокон с матрицей и уникальные свойства этих композиционных материалов.
Достоинствами данных композитов являются малая плотность (1,3-2,1 т/м3), высокие теплоемкость, сопротивление тепловому удару, эрозии и облучению, низкий коэффициент трения, высокая коррозионностойкость, широкий диапазон электрических свойств (от проводнико до полупроводников), высокие прочность и жесткость (таблица 10.7). К недостаткам относят склонность к окислению при нагреве выше 5000С в окислительной среде. В инертной среде и вакууме изделия из углерод-углеродных композиционных материалов работают до 30000С.
Исходным материалом для матриц служат синтетические органические смолы с высоким коксовым остатком (феноло-формальдегидные, фурановые, эпоксидные и др.), а также каменноугольные и нефтяные пеки (вязкие остатки перегонки дегтей, смол или при пиролизе нефти).
Наполнителями служат углеграфитовые волокна, жгуты, нити, тканные материалы.
Применяются углерод-углеродные композиционные материалы при изготовлении газотурбинных двигателей, турбинных фарсунок, панели, для торомзных накладок и др.
Типичные эксплуатационные свойства УУКМ
Неметаллические материалы
Пластмассы (пластики) – это органические материалы на основе полимеров, которые способны при нагреве размягчаться и под давлением принимать определенную устойчивую форму. Простые пластмассы состоят из одних химических полимеров. Сложные пластмассы включают добавки: наполнители, пластификаторы, красители, отвердители, катализаторы.
Полимеры – это вещества, макромолекулы которых состоят из многочисленных повторяющихся элементарных звеньев, которые представляют одинаковую группу атомов. Молекулярная масса молекул составляет от 500 до 1000000.
В молекулах полимеров различают главную цепь, которая построена из большого числа атомов. Боковые цепи имеют меньшую протяженность.
Полимеры, главная цепь которых содержит одинаковые атомы, называют гомоцепными, а если атомы углерода – карбоцепными. Полимеры, в главной цепи которых содержатся различные атомы, называют гетероцепными.
Макромолекулы полимеров по форме делят на линейные, разветвленные, плоские, ленточные, пространственные или сетчатые.
Линейные макромолекулы полимера – длинные зигзагообразные и скрученные в спираль цепочки, которым присуща гибкость, ограничивающаяся жесткими участками – сегментами, состоящими из нескольких звеньев. Такие макромолекулы обладают высокой прочностью вдоль главной цепи, слабо связаны между собой и обеспечивают высокую эластичность материала. Нагрев вызывает размягчение, а последующее охлаждение – затвердевание полимера (полиамид, полиэтилен).
Разветвленная макромолекула содержит боковые ответвления и это затрудняет сближение макромолекул и понижает межмолекулярное взаимодействие. Полимеры с такой формой отличаются пониженной прочностью, повышенной плавкостью и рыхлостью. Сшитые формы макромолекул свойственны более прочным, нерастворимым и неплавким полимерам, склонным к набуханию в растворителях и размягчению при нагревании.
Макромолекулы полимеров обладают гибкостью.
Наполнители в пластмассы вводят в количестве 40–70 % для повышения твердости, прочности, жесткости, придания особых специфических свойств. Наполнителями могут быть ткани и порошкообразные, волокнистые вещества.
Пластификаторы (стеарин, олеиновая кислота) способствуют повышению эластичности, пластичности и облегчают обработку пластмасс.
Отвердители (амины) и катализаторы (перекисные соединения) вводят в пластмассы для отверждения.
Красители (минеральные пигменты, спиртовые растворы органических красок) придают пластмассам определенную окраску и снижают их стоимость. Состав компонентов, их сочетание и количественное соотношение позволяют изменять свойства пластмасс в широких пределах. Пластмассы классифицируют по признакам.
По виду наполнителя: с твердым наполнителем; с газообразным наполнителем.
По реакции связующего полимера к повторным нагревам. Термопластичные пластмассы на основе термопластичного полимера размягчаются при нагреве и затвердевают при последующем охлаждении (чистые полимеры или композиции полимеров с пластификаторами, противостарителями).
Термопласты отличаются низкой усадкой 1–3%. Для них характерны малая хрупкость, большая упругость и способность к ориентации.
Термореактивные пластмассы на основе термореактивных полимеров (смол) после тепловой обработки – отверждения – переходят в термостабильное состояние и отличаются хрупкостью, имеют большую усадку 10–15 % и содержат в своем составе наполнители.
По применению подразделяются на группы: конструкционные – для силовых деталей и конструкций, для несиловых деталей; прокладочные, уплотнительные; фрикционные и антифрикционные; электроизоляционные, радиопрозрачные теплоизоляционные; стойкие к воздействию огня, масел, кислот; облицовочно-декоративные.
Полиэтилен можно использовать длительное время при 60-100 °C. Морозостойкость достигает –70 °C и ниже. Химически стоек и нерастворим в растворителях, применяется для изоляции защитных оболочек кабелей проводов, деталей высокочастотных установок и изготовления коррозионностойких деталей – труб, прокладок, шлангов. Его выпускают в виде пленки, листов, труб, блоков. Полиэтилен подвержен старению
Полистирол – это аморфный, твердый, прозрачный полимер, который имеет линейное строение, высокие диэлектрические свойства, удовлетворительную механическую прочность, невысокую рабочую температуру (до 100 °C), химическую стойкость в щелочах, минеральных и органических кислотах, маслах. Он набухает в 65 %-ной азотной, ледяной уксусной кислотах, бензине и керосине. При температуре выше 200 °C разлагается, образуя стирол. Полистирол применяют для производства слабонагруженных деталей и высокочастотных изоляторов. Недостатки – хрупкость при пониженных температурах, склонность к постепенному образованию поверхностных трещин.
Пластмассы широко применяются в машиностроении и приборостроении для изготовления деталей. Пластмассы электротехнического назначения применяют в качестве электроизоляционных материалов в конструкциях машин.
Композиционные материалы – искусственно созданные материалы, которые состоят из двух или более компонентов, различающихся по составу и разделенных выраженной границей, и которые имеют новые свойства, запроектированные заранее.
Компоненты композиционного материала различны по геометрическому признаку.
Компонент, непрерывный во всем объеме композиционного материала, называется матрицей.
Компонент прерывистый, разделенный в объеме композиционного материала, называется арматурой.
Матрица придает требуемую форму изделию, влияет на создание свойств композиционного материала, защищает арматуру от механических повреждений и других воздействий среды.
Армирующие или упрочняющие компоненты равномерно распределены в матрице. Они, как правило, обладают высокой прочностью, твердостью и модулем упругости и по этим показателям значительно превосходят матрицу. Вместо термина армирующий компонент можно использовать термин наполнитель.
Композиционные материалы классифицируют по геометрии наполнителя, расположению его в матрице, природе компонентов.
По геометрии наполнителя композиционные материалы подразделяются на три группы:
· с нуль-мерными наполнителями, размеры которых в трех измерениях имеют один и тот же порядок;
· с одномерными наполнителями, один из размеров которых значительно превышает два других;
· с двухмерными наполнителями, два размера которых значительно превышают третий.
По схеме расположения наполнителей выделяют три группы композиционных материалов:
· с одноосным (линейным) расположением наполнителя в виде волокон, нитей, нитевидных кристаллов в матрице параллельно друг другу;
· с двухосным (плоскостным) расположением армирующего наполнителя, матов из нитевидных кристаллов, фольги в матрице в параллельных плоскостях;
· с трехосным (объемным) расположением армирующего наполнителя и отсутствием преимущественного направления в его расположении.
По природе компонентов композиционные материалы разделяются на четыре группы:
· композиционные материалы, содержащие компонент из металлов или сплавов;
· композиционные материалы, содержащие компонент из неорганических соединений оксидов, карбидов, нитридов и др.;
· композиционные материалы, содержащие компонент из неметаллических элементов, углерода, бора и др.;
· композиционные материалы, содержащие компонент из органических соединений эпоксидных, полиэфирных, фенольных и др.
В композиционных материалах с нуль-мерным наполнителем наибольшее распространение получила металлическая матрица. Композиции на металлической основе упрочняются равномерно распределенными дисперсными частицами различной дисперсности. Такие материалы отличаются изотропностью свойств.
Армирующими наполнителями служат частицы тугоплавких оксидов, нитридов, боридов, карбидов.
Дисперсионно упрочненные композиционные материалы получают методами порошковой металлургии или вводят частицы армирующего порошка в жидкий расплав металла или сплава.
Промышленное применение нашли композиционные материалы на основе алюминия, упрочненные частицами оксида алюминия (Al2O3). Их получают прессованием алюминиевой пудры с последующим спеканием (САП). Преимущества САП проявляются при температурах выше 300oС, когда алюминиевые сплавы разупрочняются. Дисперсионно упрочненные сплавы сохраняют эффект упрочнения до температуры 0,8 Тпл.
Сплавы САП удовлетворительно деформируются, легко обрабатываются резанием, свариваются аргонодуговой и контактной сваркой. Из САП выпускают полуфабрикаты в виде листов, профилей, труб, фольги. Из них изготавливают лопатки компрессоров, вентиляторов и турбин, поршневые штоки.
В композиционных материалах с одномерными наполнителями упрочнителями являются одномерные элементы в форме нитевидных кристаллов, волокон, проволоки, которые скрепляются матрицей в единый монолит. Важно, чтобы прочные волокна были равномерно распределены в пластичной матрице. Для армирования композиционных материалов используют непрерывные дискретные волокна с размерами в поперечном сечении от долей до сотен микрометров.
Материалы, армированные нитевидными монокристаллами, были созданы в начале семидесятых годов для авиационных и космических конструкций. Основным способом выращивания нитевидных кристаллов является выращивание их из перенасыщенного пара (ПК-процесс). Для производства особо высокопрочных нитевидных кристаллов оксидов и других соединений осуществляется рост по П-Ж-К – механизму: направленный рост кристаллов происходит из парообразного состояния через промежуточную жидкую фазу.
Композиционные материалы этого типа перспективны как высокожаропрочные материалы. Для увеличения к.п.д. тепловых машин лопатки газовых турбин изготавливают из никелевых сплавов, армированных нитями сапфира (Al2O3), это позволяет значительно повысить температуру на входе в турбину (предел прочности сапфировых кристаллов при температуре 1680oС выше 700 МПа).
Для армирования композиционных материалов применяют металлическую проволоку из разных металлов: стали разного состава, вольфрама, ниобия, титана, магния – в зависимости от условий работы. Стальная проволока перерабатывается в тканые сетки, которые используются для получения композиционных материалов с ориентацией арматуры в двух направлениях.
Для армирования легких металлов применяются волокна бора, карбида кремния. Особенно ценными свойствами обладают углеродистые волокна, их применяют для армирования металлических, керамических и полимерных композиционных материалов.
Полимерные композиционные материалы. Особенностью является то, что матрицу образуют различные полимеры, служащие связующими для арматуры, которая может быть в виде волокон, ткани, пленок, стеклотекстолита.
Композиционные материалы на полимерной основе.
По сравнению с композиционными материалами на металлической основе эти материалы отличает хорошая технологичность, низкая плотность и в ряде случаев более высокие удельные прочность и жесткость, они имеют высокую коррозионную стойкость, хорошие теплозащитные и амортизационные свойства.
Однако, для большинства композиционных материалов с неметаллической основой характерны следующие недостатки: низкая прочность связи волокна с матрицей, резкая потеря прочности при повышении температуры выше 100-2000С, плохая свариваемость.
Различные группы композитов, армированные однотипными волокнами, имеют специальные названия, данные им по названию волокна. Композиции с углеродными волокнами называются углеволокнитами, с борными – бороволокнитами, стеклянными – стекловолокнитами, органическими — органоволокниты.
Следует отметить, что из-за быстрого отверждения и низкого коэффциента диффузии в неметаллической матрице, в композиционных материалах нет переходного слоя между компонентами. Связь между волокнами и матрицей носит адгезионный характер, т.е. осуществляется путем молекулярного взаимодействия.
По сравнению с другими полимерами, применяемыми в качестве матриц, эпоксидные обладают более высокими механическими свойствами в интервале температур от -60 до 1800С, что и обеспечивает композитам более высокие прочностные характеристики при сжатии и сдвиге.
Но эпоксидные матрицы уступают феноло-формальдегидным и особенно полиимидным в теплостойкости.
Одним из способов улучшения свойств композиционных материалов является увеличение жесткости матрицы с помощью введения в их структуру ионов металлов, которые усиливают взаимосвязь между полимерными молекулами.
Влияние добавок Ba2+ и Ni2+ на свойства
Примечание. Значения модуля упругости и разрушающего напряжения определены при испытании на изгиб.
Стекловолокниты – содержат в качестве наполнителя стеклянные волокна. В настоящее время выпускают стеклопластики с ориентированным и неориентированным (хаотичным) расположением волокон. Стекловолокниты имеют самую высокую прочность и удельную прочность. Их достоинством является недефицитность и низкая стоимость упрочнителя, по удельной жесткости они превосходят легированные стали.
Углеволокниты – это полимерные композиционные материалы, содержащие в качестве наполнителя углеродные волокна. Углеволокниты обладают низкими теплопроводностью и электропроводностью, но их теплопроводность в 1,5-2 раза выше, чем у стекловолокнитов. Они имеют малый и стабильный коэффициент трения и обладают хорошей износостойкостью.
К недостаткам относят низкую прочность при сжатии и межслойном сдвиге.
Бороволокниты характеризуются высоким временным сопротивлением пределами прочности при сжатии и сдвиге, твердостью и модулем упругости.
Свойства бороволокнитов зависят не только от свойств волокон и их объемного содержания, но и в большей степени от их геометрии и диаметра. Так, ячеистая структура волокна обеспечивает высокую прочность при сдвиге и срезе. Большой диаметр волокон и высокий модуль упругости придают устойчивость бороволокниту и способствуют повышению прочности при сжатии.
Органоволокниты– обладают малой массой, сравнительно высокими удельными прочностью и жесткостью, стабильны при действии знакопеременных нагрузок, резкой смене температуры. Они устойчивы в агрессивных средах и влажном климате, имеют низкие электро- и теплопроводность.
Недостатком этих материалов является сравнительно низкая прочность при сжатии и высокая ползучесть.
Органоволокниты применяют в качестве изоляционного и конструкционного материала в электро- и радиопромышленности, авиатехнике, автомобилестроении, из них изготавливают трубы, емкости для реактивов, покрытия судов и др. изделия.
Свойства композиционных материалов с полимерной матрицей приведены в таблице 10.6.
Таблица 20.5 массой, сравнительно высокими удельными прочностью и жесткостью, стабильны при действии знакопеременннию прочности при сжа
Свойства одноосно-армированных композиционных материалов
с полимерной матрицей.
Керамические композиционные материалы – это материалы, в состав которых входят керамическая матрица и металлические или неметаллические наполнители. В качестве матриц используют силикатные (SiO2), алюмосиликатные (Al2O3-SiO2), алюмоборосиликатные (Al2O3— B2O3 SiO2) и другие стекла, тугоплавкие оксиды (BeO, Al2O3, Zr O2 и т.д.), нитрид (Si3Nu), бориды (TiB2, ZrB2) и карбиды (SiC, TiC).
Керамические композиты на основе карбидов и оксидов с добавками металлического порошка (< 50% (об.)) называются керметами. Они не нашли широкого применения из-за высокой хрупкости.
Для армирования композиционных материалов используют металлическую проволоку из жаропрочной стали, вольфрама, молибдена, а также неметаллические волокна (углеродные, керамические). Ориентация волокон в зависимости от условий нагружения может быть направленный или хаотичной.
Металлический каркас из тугоплавких металлов и электропрочных сталей имеет целью создать пластичный каркас, предохраняющий композит от разрушения. Ударная вязкость и термостойкость керамических композитов при увеличении содержания волокна не более чем на 25% повышаются.
Применяются керамические композиционные материалы при высоких температурах для изготовления ответственных тяжелонагруженных изделий (высокотемпературные подшипники уплотнений, направляющие и рабочие лопатки газотурбинных двигателей и т.д.).
Углерод-углеродные композиционные материалыпредставляют собой углеродную матрицу, армированную углеродными волокнами или тканями. Одинаковая природа и близкие физико-химические свойства обеспечивают прочную связь волокон с матрицей и уникальные свойства этих композиционных материалов.
Достоинствами данных композитов являются малая плотность (1,3-2,1 т/м3), высокие теплоемкость, сопротивление тепловому удару, эрозии и облучению, низкий коэффициент трения, высокая коррозионностойкость, широкий диапазон электрических свойств (от проводнико до полупроводников), высокие прочность и жесткость (таблица 10.7). К недостаткам относят склонность к окислению при нагреве выше 5000С в окислительной среде. В инертной среде и вакууме изделия из углерод-углеродных композиционных материалов работают до 30000С.
Исходным материалом для матриц служат синтетические органические смолы с высоким коксовым остатком (феноло-формальдегидные, фурановые, эпоксидные и др.), а также каменноугольные и нефтяные пеки (вязкие остатки перегонки дегтей, смол или при пиролизе нефти).
Наполнителями служат углеграфитовые волокна, жгуты, нити, тканные материалы.
Применяются углерод-углеродные композиционные материалы при изготовлении газотурбинных двигателей, турбинных фарсунок, панели, для торомзных накладок и др.
Типичные эксплуатационные свойства УУКМ
В качестве неметаллической матрицы применяются полимеры (фенолформальдегидные смолы, полиамиды), керамические матрицы, углеродные материалы.
Преимущества: низкая плотность, высокая удельная прочность и жесткость, коррозионная стойкость, высокие теплозащитные и амортизационные показатели, высокие фрикционные/антифрикционные свойства.
Недостатки: низкая прочность связи волокна с матрицей, резкая потеря прочности при повышении температуры выше 200 С, неподдаются сварке.
Распространение: с полимерной матрицей в сочетании с высоко-прочными и высокомодульными волокнами (углеродные волокна, борные волокна, стеклянные и органические волокна).
Стекловолокнид – имеет самую высокую прочность и низкую стоимость, низкий модуль упругости. Применяется в авиации, изготавливают болоны высокого давления.
Карбоволокниды – отличаются низкой тепло и электропроводностью, имеют малый коэффициент линейного расширения, низкая прочность при сжатии, межслойный сдвиг.
Углепластик – используется в авиационной, космической технике, автомобилестроении. В качестве упрочнителя — углеродные волокна, получаемые карбонизацией полимерных волокон науглероживающей среде при температуре 2000 – 2100С. Очень высокая прочность (выше, чем у стали), малая плотность.
Оргонопластики – самые легкие композиты, плотность, низкая пористость 1-3%, высокая удельная прочность, пластичность, вязкость. Используется в качестве облицовочного материала.