- Понятие и история исследования золотого сечения. Особенности его отражения в математике, природе, архитектуре и живописи. Порядок и принципы построения, структура и сферы практического применения золотого сечения, математическое обоснование и значение.
- Использование принципов «золотого сечения» в математике, физике, биологии, астрономии, в архитектуре и других науках и искусствах. Обзор истории и математической сущности золотого сечения, осмысление его роли в современной науке; «математика гармонии».
- Отрезок прямой АВ можно разделить на две части следующими способами
- Золотое сечение
- Подобные документы
Понятие и история исследования золотого сечения. Особенности его отражения в математике, природе, архитектуре и живописи. Порядок и принципы построения, структура и сферы практического применения золотого сечения, математическое обоснование и значение.
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Использование принципов «золотого сечения» в математике, физике, биологии, астрономии, в архитектуре и других науках и искусствах. Обзор истории и математической сущности золотого сечения, осмысление его роли в современной науке; «математика гармонии».
«Математика и золотое сечение»
1. История золотого сечения
2. Математическая сущность золотого сечения
3. Золотое сечение в современной науке
Золотое сечение (гармоническое деление, деление в крайнем и среднем отношении) — деление отрезка на две части таким образом, что большая его часть является средней пропорциональной между всем отрезком и меньшей его частью.
Принципы «золотого сечения» используются в математике, физике, биологии, астрономии и др. науках, в архитектуре и др. искусствах. Они лежат в основе архитектурных пропорций многих замечательных произведений мирового зодчества, главным образом античности и Возрождения.
«В геометрии существует два сокровища — теорема Пифагора и деление отрезка в крайнем и среднем отношении. Первое можно сравнить с ценностью золота, второе можно назвать драгоценным камнем». Эти слова сказал четыре столетия назад немецкий астроном и математик Иоганн Кеплер, они являются эпиграфом практически ко всем трудам, посвященным «золотому сечению». Гениальный ученый поставил пропорцию «золотого сечения» на один уровень с самой знаменитой геометрической теоремой.
Однако «золотому сечению» повезло меньше, чем теореме Пифагора — «классическая» наука и педагогика его игнорируют, а «официальная» математика не признаёт.
Цель данной работы провести краткий обзор истории и математической сущности золотого сечения, и попытаться осмыслить его роль в современной математике.
Если упростить задачу Эвклида, то отрезок линии АВ будет считаться разделенным точкой С (которая ближе к точке А) в «золотой пропорции», если отношение большей части СВ к меньшей АВ равно отношению всего отрезка АВ к большей части СВ, т.е. СВ:АС=АВ:СВ. Результатом решения этой задачи является иррациональное число, приблизительно равняющееся 1,618, которое и называют золотым сечением, золотым числом или золотой пропорцией.
После Евклида исследованием золотого деления занимались Гипсикл (II в. до н.э.), Папп (III в. н.э.) и др.
В целом все первые геометрические системы — эвклидова геометрия, теорема Пифагора — свидетельствуют о том, насколько волновали древних греков проблемы гармонии, поиск идеальных пропорций и форм. Однако есть предположение, что первыми к принципу золотого сечения пришли все же египтяне. Наиболее известная пирамида Хеопса построена с использованием т.н. золотого треугольника, в котором соотношение гипотенузы к меньшему катету равно золотому сечению. Храмы, барельефы, предметы быта и украшения из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Корбюзье нашел, что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют величинам золотого деления. Зодчий Хесира, изображенный на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого сечения.
Эстетическим каноном древнегреческой культуры этот принцип стал благодаря Пифагору, который изучал в стране пирамид тайные науки египетских жрецов. Их результат воплощен в фасаде древнегреческого храма Парфенона, где присутствуют золотые пропорции. При его раскопках обнаружены циркули, которыми пользовались архитекторы и скульпторы античного мира. В Помпейском циркуле (музей в Неаполе) также заложены пропорции золотого деления. Также с использованием золотого сечения созданы Афродита Праксителя и театр Диониса в Афинах.
Платон (427-347 гг. до н.э.) также знал о золотом делении. Его диалог «Тимей» посвящен математическим и эстетическим воззрениям школы Пифагора и, в частности, вопросам золотого деления.
Во времена средневекового Ренессанса гениальный итальянский математик Лука Пачоли написал первую книгу о золотом сечении, назвав ее «Божественной пропорцией». По его мнению, даже Бог использовал принцип золотого сечения для создания Вселенной. Эта идея была позже использована Кеплером, последняя книга которого так и называлась — «Гармония Вселенной». Пачоли считают творцом начертательной геометрии.
В то же самое время Леонардо да Винчи, другом которого был Пачоли, использовал для композиционного построения своей знаменитой Джоконды т.н. «золотой равнобедренный треугольник», в котором отношение бедра к основе равно золотому сечению.
Леонардо да Винчи также много внимания уделял изучению золотого деления. Он производил сечения стереометрического тела, образованного правильными пятиугольниками, и каждый раз получал прямоугольники с отношениями сторон в золотом делении. Поэтому он дал этому делению название «золотое сечение». Так оно и держится до сих пор как самое популярное.
В то же время на севере Европы, в Германии, над теми же проблемами трудился Альбрехт Дюрер. Он делает наброски введения к первому варианту трактата о пропорциях. Судя по одному из писем Дюрера, он встречался с Лукой Пачоли во время пребывания в Италии. Альбрехт Дюрер подробно разрабатывает теорию пропорций человеческого тела. Важное место в своей системе соотношений Дюрер отводил «золотому сечению». Рост человека делится в золотых пропорциях линией пояса, а также линией, проведенной через кончики средних пальцев опущенных рук, нижняя часть лица — ртом и т.д. Известен пропорциональный циркуль Дюрера.
Систематизировать знания по золотому сечению и придать им четкую арифметическую форму фундаментальной пропорции мироздания удалось уже только в наше время. Большая роль в исследовании золотого сечения принадлежит украинскому учёному Алексею Стахову, в 80-х годах прошлого века обосновавшему базис нового учения о гармонии систем, должного стать, по его мнению, основной интегрирующей наукой XXI века. Книги винницкого ученого «Введение к алгоритмической теории измерения», «Коды золотой пропорции», «Компьютерная арифметика на числах Фибоначчи и золотом сечении», «Новый тип элементарной математики и компьютерной науки на основе золотого сечения» изданы за рубежом и не остались без внимания западных производителей информационных и компьютерных технологий. Канадский университет Торонто признал автора «мыслителем XXI века». Весной 2003 г. российский физик-теоретик Юрий Владимиров открыл принцип золотого сечения в структуре атома. Ощутимый прорыв в современных представлениях о природе формообразования биологических объектов сделал в начале 90-х годов украинский ученый Олег Боднар, создавший новую геометрическую теорию филлотаксиса.
Математика гармонии применима и к современной экономике. Довольно известны, например, работы российского ученого Харитонова об экономическом развитии российских регионов и страны, в целом исходя из принципов золотого сечения.
Благодаря исследованиям американских ученых Эллиота, Пречтера и Фишера числа Фибоначчи вошли в сферу бизнеса как основа оптимальных стратегий.
Наиболее перспективным направлением применения новой математики считаются компьютерные технологии. Сегодня эти разработки защищены 65 патентами США, Японии, Англии, Германии и других стран. По одной из таких технологий известная американская фирма недавно запустила в серийное производство т.н. аналоговый микропроцессор для цифровой обработки сигналов.
Рассмотрим рисунок 1. Отрезок прямой АВ можно разделить точкой C на две части следующими способами:
· на две равные части АВ: АC = АВ: ВC;
· на две неравные части в любом отношении (такие части пропорции не образуют), таким образом, когда АВ: АC = АC: ВC.
Последнее и есть золотое деление или деление отрезка в крайнем и среднем отношении.
Алгебраически «золотое сечение можно выразить следующим образом: AB: AC = AC: (AB — AC), откуда AC = AB: 2 (v5 — 1) ? 0,62 AB. Число 0,62 обозначено буквой ц, в честь древнегреческого скульптора Фидия.
Золотое сечение тесно связано с числами Фибоначчи. Числа 0.618 и 0.382 являются коэффициентами последовательности Фибоначчи. На этой пропорции базируются основные геометрические фигуры.
Рассмотрим взаимосвязь «золотого сечения с числами Фибоначчи.
Данная последовательность асимптотически (приближаясь все медленнее и медленнее) стремится к некоторому постоянному соотношению. Однако, это соотношение иррационально, то есть представляет собой число с бесконечной, непредсказуемой последовательностью десятичных цифр в дробной части. Его невозможно выразить точно.
Широкое распространение получили т.н. «золотые фигуры», имеющие в своей основе «золотое сечение».
Прямоугольник с «золотым» отношением сторон стали называть «золотым прямоугольником». Он также обладает интересными свойствами. Если от него отрезать квадрат, то останется вновь золотой прямоугольник. Этот процесс можно продолжать до бесконечности. А если провести диагональ первого и второго прямоугольника, то точка их пересечения будет принадлежать всем получаемым золотым прямоугольникам.
«Золотой треугольник» — это равнобедренный треугольник, у которого отношение длины боковой стороны к длине основания равняется 1.618.
Есть и «золотой кубоид» — это прямоугольный параллелепипед с ребрами, имеющими длины 1.618, 1 и 0.618.
В звездчатом пятиугольнике каждая из пяти линий, составляющих эту фигуру, делит другую в отношении золотого сечения, а концы звезды являются «золотыми треугольниками». Внутри пятиугольника можно продолжить строить пятиугольники, и это отношение будет сохраняться.
Звездчатый пятиугольник называется пентаграммой. Пифагорейцы выбрали пятиконечную звезду в качестве талисмана, она считалась символом здоровья и служила опознавательным знаком.
В настоящее время существует гипотеза, что пентаграмма — первичное понятие, а «золотое сечение» вторично. Пентаграмму никто не изобретал, её только скопировали с натуры. Вид пятиконечной звезды имеют пятилепестковые цветы плодовых деревьев и кустарников, морские звезды. Те и другие создания природы человек наблюдает уже тысячи лет. Поэтому естественно предположить, что геометрический образ этих объектов — пентаграмма — стала известна раньше, чем «золотая» пропорция.
«Лотарингский крест», служивший эмблемой «Свободной Франции» (организация, которую в годы второй мировой войны возглавлял генерал де Голль), составлен из тринадцати единичных квадратов. Установлено, что прямая, делящая площадь «лотарингского креста» на две равные части, делит его в золотом отношении.
Последовательно отсекая от «золотых прямоугольников» квадраты до бесконечности, каждый раз соединяя противоположные точки четвертью окружности, можно получить довольно изящную кривую. Первым внимание на неё обратил древнегреческий ученый Архимед, имя которого она и носит. Он изучал её и вывел уравнение этой спирали. В настоящее время «спираль Архимеда» широко используется в технике. В гидротехнике по «золотой спирали» изгибают трубу, подводящую поток воды к лопастям турбины. Благодаря этому напор воды используется с наибольшей производительностью.
Интерес человека к природе привёл к открытию её физических и математических закономерностей. Красота природных форм рождается во взаимодействии двух физических сил — тяготении и инерции. Золотая пропорция — это математический символ этого взаимодействия, поскольку выражает основные моменты живого роста: стремительный взлёт юных побегов сменяется замедленным ростом «по инерции» до момента цветения.
Рассматривая расположение листьев на общем стебле многих растений, можно заметить, что между каждыми двумя парами листьев третья расположена в месте «золотого сечения».
«Золотую спираль» также можно заметить в созданиях природы.
Например, расположение семечек в корзине подсолнечника. Они выстраиваются вдоль спиралей, которые закручиваются как слева направо, так и справа налево. В одну сторону у среднего подсолнечника закручено 13 спиралей, в другую — 21. Отношение 13: 21 — отношение Фибоначчи.У более крупных соцветий подсолнечника число соответствующих спиралей больше, но отношение числа спиралей, закручивающихся в разных направлениях также равно числу j.
Похожее спиральное расположение наблюдается у чешуек сосновых шишек или ячеек ананаса. По золотой спирали свёрнуты раковины многих моллюсков, некоторые пауки, сплетая паутину, закручивают нити вокруг центра по золотым спиралям. Рога архаров закручиваются по золотым спиралям.
Природа повторяет свои находки, как в малом, так и в большом. По золотым спиралям закручиваются многие галактики, в частности и галактика Солнечной системы.
Одним из первых проявлений золотого сечения в природе подметил разносторонний наблюдатель, автор многих смелых гипотез немецкий математик и астроном Иоганн Кеплер (1571 — 1630). С XVII в. наблюдения математических закономерностей в ботанике и зоологии стали быстро накапливаться.
В 1850 г. немецкий учёный А. Цейзинг открыл так называемый закон углов, согласно которому средняя величина углового отклонения ветки растения равна примерно 138°. Величина среднего углового отклонения ветки соответствует меньшей из двух частей, на которые делится полный угол при золотом сечении.
В каждой науке есть т.н. «метафизические» знания, без которых невозможно существование самой науки. Например, если исключить из математики понятия натурального и иррационального чисел или аксиомы геометрии, математика сразу же перестанет существовать. С таким же правом к разряду «метафизических» знаний может быть отнесено и «золотое сечение», которое считалось «каноном» античной культуры, а затем и эпохи Возрождения. Однако, как это ни парадоксально, в современной теоретической физике и математике «золотая пропорция» никак не отражена. Ныне делаются попытки показать, что «золотое сечение» является одной из важнейших «метафизических» идей, без которой трудно представить дальнейшее развитие науки, в частности, теоретической физики и математики.
Анализ современных программ образования в таких странах, как США, Канада, Россия и Украина, показывает, что в большинстве из них нет даже упоминания о «золотом сечении». То есть, имеет место сознательное игнорирование одного из важнейших открытий античной математики. Возможно, причину следует искать в негативном отношении современной «материалистической» науки и «материалистического» образования к астрологии и так называемым «эзотерическим» наукам. В них «золотое сечение» и связанные с ним геометрические фигуры — «пентаграмма», «Платоновы тела», «куб Метатрона» — широко используются в качестве основных «сакральных» символов. И «материалистическое» образование не нашло ничего более разумного, как выбросить золотое сечение на свалку «сомнительных научных концепций» вместе с астрологией и «эзотерическими» науками. В результат большинство т.н. «образованных» людей хорошо знают «теорему Пифагора», но имеют весьма смутное представление о «золотом сечении».
В настоящее время исследуются математические теории связанные с принципами «золотого сечения»: новая теория гиперболических функций, новая теория чисел, новая теория измерения, теория матриц Фибоначчи и так называемых «золотых» матриц, новые компьютерные арифметики, новая теорию кодирования и новая теория криптографии. Суть новой науки, в пересмотре с точки зрения золотого сечения всей математики, начиная с Пифагора, что, естественно, повлечет в теории новые и наверняка очень интересные математические результаты. В практическом отношении — «золотую» компьютеризацию. А поскольку «математика гармонии» существенно дополнит классическую математику, вполне возможно придется пересмотреть и всю систему современного математического образования.
В заключении попытаемся сформулировать наиболее популярное и понятное для обывателя определение «золотого сечения».
Золотое сечение — это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему.
Нами был проведен исторический экскурс и разобрана математическая сущность «золотого сечения», рассмотрено строение «золотых фигур».
Знакомство с принципами «золотого сечения», помогает видеть гармонию и целесообразность окружающих нас творений природы и человека. Можно сделать выводы:
· во-первых, золотое сечение — это один из основных основополагающих принципов природы;
· во-вторых, человеческое представление о красивом явно сформировалось под влиянием того, какой порядок и гармонию человек видит в природе.
Несмотря на неприятие «золотого сечения» современными «официальными науками, оно повсеместно используется в технике, во многих странах мира, в том числе в России и Украине, довольно крупные учёные продолжают изучать и искать практическое применение одному из «золотых» математических принципов.
1. Азевич А.И. Двадцать уроков гармонии: гуманитарно-математический курс. — М.: Школа-пресс, 1998.
2. Васюткинский Н.Н. Золотая пропорция. — М., 1990.
3. Волошинов А.В. Математика и искусство. — М., 1992.
4. Гарднер М. Математические головоломки и развлечения. — М., 1994.
5. Кованцов Н.И. Математика и романтика. — Киев, 1976.
6. МСЭ // под редакцией Б.А. Введенского. — М. 1959.
7. Пидоу Д. Геометрия и искусство. — М.: Мир, 1989.
8. Прохоров А.И. Золотая спираль // Квант. 1984. № 9.
Отрезок прямой АВ можно разделить на две части следующими способами
1. на две равные части — АВ: АС = АВ: ВС;
2. на две неравные части в любом отношении (такие части пропорции не образуют);
таким образом, когда АВ: АС = АС: ВС.
a: b = b: c или с: b = b: а.
Практическое знакомство с золотым сечением начинают с деления отрезка прямой в золотой пропорции с помощью циркуля и линейки (Рис. 4).
Из точки В восставляется перпендикуляр, равный половине АВ. Полученная точка С соединяется линией с точкой А. На полученной линии откладывается отрезок ВС, заканчивающийся точкой D. Отрезок AD переносится на прямую АВ. Полученная при этом точка Е делит отрезок АВ в соотношении золотой пропорции.
Свойства золотого сечения описываются уравнением:
x2 — x — 1 = 0.
Золотое сечение
КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ ИМЕНИ И.Т. ТРУБИЛИНА
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF
Человек различает окружающие его предметы по форме. Интерес к форме какого-либо предмета может быть продиктован жизненной необходимостью, а может быть вызван красотой формы. Форма, в основе построения которой лежат сочетание симметрии и золотого сечения, способствует наилучшему зрительному восприятию и появлению ощущения красоты и гармонии. Целое всегда состоит из частей, части разной величины находятся в определенном отношении друг к другу и к целому. Принцип золотого сечения – высшее проявление структурного и функционального совершенства целого и его частей в искусстве, науке, технике и природе
1. Измерить гармонию алгеброй.
2. Изучить разнообразие применения золотого сечения и связанные с ним соотношения в реальной жизни;
2. Разобраться в пропорциях человека как гармонии и красоты.
1. Познакомиться с понятием золотого сечения и с историей его развития;
2. Получить представление о практическом применении золотого сечения в реальной жизни;
3. Выяснить, почему с этим понятием связана гармония и красота.
Предметом исследования является золотое сечение, объектом – гармоническая пропорция.
Актуальность работы – гармония и красота в жизни всегда актуальны
: в окружающем мире “золотое сечение” является основополагающим принципом красоты, прочности, надежности и позволяет осознать связь мира искусства и мира чисел.
1. Понятие «золотое сечение».
«Золотым сечением» и даже «божественной пропорцией» называли математики древности и средневековья такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему.
а :b = b : c или с : b = b : а
Итак, золотая пропорция = 1 :1,618. Это отношение приближенно равно 0,618 ≈ 5/8.В алгебре это число обозначается греческой буквой фи (φ). Полученное значение есть знаменитое число «фи», названное так американским математиком Марком Баром по первой букве имени великого скульптора Фидия, который, по преданию, использовал «золотое сечение» в своих работах.
Замечательный пример «золотого сечения» представляет собой правильный пятиугольник — выпуклый и звездчатый.
Из подобия треугольников АС можем вывести уже известную пропорцию:
Таким образом, звездчатый пятиугольник также обладает «золотым сечением». Внутри пятиугольника можно продолжить строить пятиугольники, и это отношение будет сохраняться.
1.1. Задачи на построение.
В геометрии есть понятия: «деление отрезка в золотом отношении», «золотой треугольник», «золотой прямоугольник», «золотая логарифмическая спираль». Мне захотелось научиться строить эти фигуры. Я разобрала три задачи.
Задача №1. «Деление отрезка в золотом отношении»
Дано : Отрезок АВ.
Построить: золотое сечение отрезка АВ, то есть точку С так, чтобы Построим прямоугольный треугольник, у которого один катет в два раза больше другого. Для этого восстановим в точке В перпендикуляр к прямой АВ и на нем отложим отрезок Далее, соединив точки и , отложим отрезок =, и, наконец, =. Точка С является искомой, она производит золотое сечение отрезка АВ.
Задача №2. Построение «золотого треугольника».
Проводим прямую АВ. От точки А откладываем на ней три раза отрезок О произвольной величины, через полученную точку Р проводим перпендикуляр к линии АВ, на перпендикуляре вправо и влево от точки Р откладываем отрезки О. Полученные точки d и d1 соединяем прямыми с точкой А. Отрезок dd1откладываем на линию Ad1, получая точку С. Она разделила линию Ad1 в пропорции «золотого сечения». Линиями Ad1 и dd1 пользуются для построения «золотого» прямоугольника
2. История развития «золотого сечения».
Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор. Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Корбюзье нашел, что в рельефе из храма фараона Сети 1 в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответсвуют величинам золотого деления. Зодчий Хесира, изображенный на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления.
Также о золотом делении знал Платон. Его диалог «Тимей» посвящен математическим и эстетическим воззрениям школы Пифагора и, в частности, вопросам золотого деления. В фасаде древнегреческого храма Парфенона присутствуют золотые пропорции. При его раскопках обнаружены циркули, которыми пользовались архитекторы и скульпторы античного мира. В помпейском циркуле (музей в Неаполе) также заложены пропорции золотого деления.
В дошедшей до нас античной литературе золотое деление впервые упоминается в «Началах» Евклида. Во второй книге «Начал» дается геометрическое построение золотого деления. После Евклида исследованием золотого деления занимались Гипеикл (2 в. до н.э.), Папп (3 в. н.э.) и др.
В эпоху Возрождения усиливается интерес к золотому делению среди ученых и художников в связи с его применением как в геометрии, так и в искусстве, особенно в архитектуре. В 1509 г. В Венеции была издана книга Луки Пачоли «Божественная пропорция» с блестяще выполненными иллюстрациями, ввиду чего полагают, что их сделал Леонардо да Винчи. Книга была восторженным гимном золотой пропорции. Среди многих достоинств золотой пропорции монах Лука Пачоли не преминул назвать и ее «божественную суть» как выражение божественного триединства Бог сын, Бог отец и Бог дух святой (подразумевалась, что малый отрезок есть олицетворение Бога сына, большой отрезок – Бога отца, а весь отрезок – Бога духа святого).
Леонардо да Винчи также много внимания уделял изучению золотого деления. Он производил сечения стереометрического тела, образованного правильными пятиугольниками, и каждый раз получал прямоугольники с отношениями сторон в золотом делении. Поэтому он дал этому делению название Золотое Сечение. Так оно и держится до сих пор как самое популярное.
В 1855 г. Немецкий исследователь золотого сечения профессор Цейзинг опубликовал свой труд «Эстетические исследования». Он абсолютизировал пропорцию золотого сечения, объявив ее универсальной для всех явлений природы и искусства.
В конце 19 – начале 20 вв. появилось немало чисто формалистических теорий о применении золотого сечения в произведениях искусства и архитектуры.
3. «Золотое сечение» в разных сферах
3.1.«Золотое сечение» в скульптуре.
Скульптурное сооружение, памятники воздвигаются, чтобы увековечить знаменательные события, сохранить в памяти потомков имена прославленных людей, их подвиги и деяния. Ещё в древности основу скульптуры составляла теория пропорций. Отношения частей человеческого тела связывались с формулой золотого сечения. Пропорции «золотого сечения» создают впечатление гармонии красоты, поэтому скульпторы использовали их в своих произведениях. Они утверждают, что талия делит совершенное человеческое тело в отношении «золотого сечения».
Великий древнегреческий скульптор Фидий часто использовал «золотое сечение» в своих произведениях. Самая знаменитая статуя Зевса Олимпийского и Афины Парфенос (которые считались одним из чудес света). Было проведено большое число измерений на помещённых в журналах крупных портретах мужчин и женщин, на многих их низ указанные отношения представляют «золотое сечение».
3.2.«Золотое сечение» в архитектуре.
Одним из красивейших произведений древнегреческой архитектуры является Парфенон (5 в. До н. э.).
Парфенон имеет 8 колонн по коротким сторонам и 17 по длинным. Выступы сделаны целиком из квадратов пентилейского мрамора. Благородство, из которого построен храм, позволило ограничить применение обычной в греческой архитектуре раскраски, она только подчеркивает детали и образует цветной фон(синий и красный) для скульптуры. Отношение высоты здания к его длине равно 0,618. Если произвести деление Парфенона по «золотому сечению», то получим те или иные выступы фасада.
Одним из шедевров архитектуры в Москве – дом Пашкова- является одним из наиболее совершенных произведений архитектуры В. Баженова. Прекрасное творение вошло в ансамбль центра современной Москвы, обогатило его. Наружный вид дома сохранился почти без изменений до наших дней, несмотря на то, что он сильно обгорел в 1812 г. При восстановлении здание приобрело более массивные формы. Не сохранилась и внутренняя планировка здания, о которой дают представления только чертеж нижнего этажа.
3.3. «Золотое сечение» в живописи.
«Золотое сечение» в живописи, проглядывалось в работах и творчесте великого Леонардо да Винчи. Он говорил: «Пусть никто, не будучи математиком, не дерзнет читать мои труды».
Одним из таких портретов является Монны Лизы (Джоконды), долгие годы привлекают внимание исследователей, которые обнаружили, что композиция рисунка основана на золотых треугольниках, являющихся частями правильного звездчатого пятиугольника. Существует много версий об истории этого портрета. Одна из них:
Однажды Леонардо да Винчи получил заказ от банкира Франческо де ле Джокондо написать портрет молодой женщины, жены банкира, Монны Лизы. Женщина не была красива, но в ней привлекало простота и естественность облика. Леонардо согласился писать портрет. Его модель была печальной и грустной, но Леонардо рассказал ей сказку, услышав которую, она стала живой и интересной.
3.4. «Золотое сечение» в природе.
«Золотое сечение» — один из основополагающих принципов природы. Красота природных форм во взаимодействии двух физических сил – тяготения и инерции. Золотое сечение – символ этого взаимодействия, поскольку диктуемое ею отношение большей части целого к самому целому выражает основные моменты живого роста: стремительный рост побега до зрелости и замедленный рост до момента цветения, когда достигшее полной силы растение готовится дать жизнь новому побегу.
Одним из первых проявления золотого сечения в природе подметил немецкий математик и астроном Иоганн Кеплер (1570-1630 гг.). С Х в. наблюдение математических закономерностей в ботанике и зоологии стали быстро накапливаться.
В 1850 г. немецкий ученый А. Цейзинг открыл так называемый закон углов, согласно которому средняя величина углового отклонения ветки растения равно примерно 138 градусов.
Допустим, что две соседние ветки растения исходят из одной точки (на самом деле это не так: в реальности ветви располагаются выше или ниже друг друга). Обозначим одну из них через ОА, другую через ОВ. Угол между лучами – ветками обозначим через а, а угол, дополняющий его до 360 , — через Р.
Составим золотую пропорцию деления полного угла, считая, что угол К – большая часть этой величины.
Получаем квадратное уравнение: Р² + 360 – Р360² =0. Положительный корень Р= -180+√180²+360²= 180·±√5= 180·1,236= 222,48.
Таким образом, величина среднего углового отклонения ветки соответствует меньшей из двух частей, на которые делится полный угол при золотом сечении.
5. Экспериментальная часть
Изучив теорию вопроса, я решила провести исследование и найти пропорции золотого сечения в живой природе (на примере комнатных растений).
Цель: проверить есть ли «золотое сечение» в растительном мире, у комнатных растений.
В первую очередь я заинтересовалась, как проявляется принцип формообразования в живой природе. Выяснилось, что комнатные растения растут и занимают место в пространстве в основном в двух вариантах — рост вверх или расстилание по поверхности, либо закручивание по спирали (вьющиеся растения). Меня заинтересовал первый вариант. Для этого было изучено 6 комнатных растений (среди них бегония клубневая, диффенбахия, традесканция, глоксиния белоцветковая, каланхое, роициссус).
Приглядимся внимательно к схематично изображённому фрагменту комнатного растения. От основного стебля образовался отросток. Тут же расположился первый листок. Отросток делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок еще меньшего размера и снова выброс.
Если измерить расстояние АС и расстояние ВС, и найти отношение
ВС.: АС, то оно приближённо равно 0,618, т.е. подчиняется золотой пропорции.
Вывод: результаты измерений показывают, что в росте, завоевании пространства, растение сохраняет определенные пропорции. Импульсы его роста постепенно уменьшаются в пропорции «золотого сечения».
В своей работе я хотел продемонстрировать красоту и широту «Золотого сечения» в реальной жизни. Проведенные исследования доказали, что многое в окружающем мире подчиняется правилу золотого сечения.
Физика исследует реальный мир. Биология – живой мир органической природы. Предмет исследования математики нематериальны, в природе нет логарифмов, синус не рассмотришь под микроскопом и при этом математика – самое могущественное орудие познания, созданное человеком, и любая наука достигает совершенства, когда начинает говорить на языке математики.
Значение золотого сечения в современной науке очень велико. Эта пропорция используется практически во всех областях знаний.
Я говорила только об его эстетическом значении, но существуют примеры его чисто практического применения. В гидротехнике по золотой спирали изгибают трубу, подводящую поток воды к лопастям турбины. Благодаря этому напор воды используется с наибольшей производительностью и т.д.
Аракелян Г. Б. Математика и история золотого сечения. — М.: Логос, 2014.
Пидоу Д. Геометрия и искусство. – М.: Мир, 1989.
Виленкин Н. и др. «Математика», 5, «Мнемозина», 2001
«Энциклопедический словарь юного математика», Москва, «Педагогика», 1985
Математический энциклопедический словарь. — М.: Советская энциклопедия, 1988.
2. https://ru.wikipedia.org/wiki/%D0% 97% D0% BE % D0% BB % D0% BE % D1% 82% D0% BE % D0% B5_%D1% 81% D0% B5% D1% 87% D0% B5% D0% BD % D0% B8% D0% B5
Размещено на Allbest.ru