Электроника реферат

Понятие, области, основные разделы и направления развития электроники. Общая характеристика квантовой, твердотельной и вакуумной электроники, направления их развития и применения в современном обществе. Достоинства и недостатки плазменной электроники.

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Области, основные разделы и направления электроники

Список используемой литературы

Вопросы для самопроверки

В сегодняшнем мире огромную роль играет электроника и электронные приборы. Сегодня все электротехническое стало таким же обыденным как биологическое. Даже более того — сегодня некоторые школьники никогда не видели живую курицу или лошадь, но все они видели и хорошо знают компьютер и интернет. Это нисколько не парадоксально просто несколько десятков лет назад ситуация была в корне другой. Но сегодня сложно представить, как человечество обходилось без компьютеров, интернета, да и простых электрических лампочек. Использование передовых технологий позволило человечеству выйти на новый уровень существования. За этой наукой будущее — со временем электронные средства позволят создать такие вещи как электромобили или новые поколения вычислительных устройств — сверхмощные компьютеры и ноутбуки.

Понятие электроника включает в себя столь обширную область человеческой деятельности, что только простое перечисление ее разделов заняло бы слишком много места. Однако во всех этих разделах есть общее: физической основой электроники являются движение электронов и законы этого движения. Электроника — важнейшая составляющая современной технической цивилизации; трудно даже представить себе, как выглядел бы наш мир без электронных устройств (ЭУ). ЭУ рассчитывают графики движения поездов и результаты научных исследований, управляют автоматическими станками и сборкой автомобилей, накапливают информацию и преобразовывают ее в форму, удобную для восприятия человеком.

Но, пожалуй, самая близкая всем нам область применения электроники — это передача информации. Сегодня кажется абсолютно естественным, что в каждом доме по вечерам загораются голубые экраны телевизоров, что можно включить радиоприемник, чтобы узнать последние известия и сводку погоды, что магнитофон дает возможность услышать записи выступлений любимых певцов и музыкантов, что во всех уголках нашей необъятной Родины всегда есть сегодняшние газеты и что телеграмма от Москвы до Хабаровска идет считанные часы. Все это достигается благодаря безупречной работе ЭУ — передатчиков и приемников информации. Линии связи сложны и многообразны, они включают в себя многочисленные промежуточные пункты обработки информации, в том числе и расположенные на искусственных спутниках Земли.

Выход человечества в околоземное космическое пространство также неразрывно связан с электроникой. ЭУ осуществляют контроль за подготовкой космических кораблей к старту и за их полетом, обеспечивают стыковку кораблей на орбите, посадку и поиск спускаемых аппаратов. В последнем случае используются специальные ЭУ — радиолокаторы, периодически посылающие радиоволны, т. е. пучки электромагнитной энергии, и по их отражению от предметов определяющие направление движения космических объектов и расстояние до них .

В последние годы появились новые классы ЭУ, основанные на законах так называемой квантовой электроники. Это широко известные лазеры — генераторы когерентных световых и радиоволн. Диапазон применения лазеров очень широк — от исследования поверхности Луны до очень точной сварки металлов в промышленности или сверхточных операций на сетчатке глаза в медицине.

С появлением лазеров связано и возникновение в середине 60-х гг. нового направления в области электроники — оптоэлектроники, использующей оптическую (фотонную) связь для передачи информации. Оптическая связь имеет ряд преимуществ перед электрической связью. Из-за электрической нейтральности фотонов в оптическом канале связи не возбуждаются электрические и магнитные поля, сопутствующие протеканию электрического тока. Иными словами, фотоны не создают помех в линиях связи.

Передача информации с помощью светового луча не сопровождается накоплением и рассеиванием электромагнитной энергии в линии, и это обеспечивает быстродействие передачи информации и минимальный уровень ее искажения. Высокая частота оптических колебаний (10м — 1015 Гц) обусловливает и большой объем информации, и ее быстродействие, а малая длина волны (до 10 ~4 — 10 5 см) предоставляет возможность для микроминиатюризации передающих и приемных устройств. Основные элементы оптоэлектроники: источники света (лазеры, светодиоды), оптические среды (активные и пассивные) и фотоприемники.

Не так давно появилась новая перспективная, область электроники — создание и применение в различных отраслях техники акустоэлектронных устройств.

Говоря об электронике, нельзя не сказать особо о важной роли электронных вычислительных машин. ЭВМ все шире проникают во все сферы деятельности человека, осуществляя в них подлинную революцию благодаря высокой точности обработки информации и огромному быстродействию: современные ЭВМ способны выполнять несколько миллионов операций в секунду. Они не только освобождают человека от трудоемкой работы по сбору и обработке информации, но и дают возможность получить принципиально новые результаты труда. Примером может служить использование ЭВМ на заводах по производству особо чистых материалов, являющихся основой современной электронной промышленности: ни один человек — оператор не справился бы с управлением сложнейшими технологическими процессами.

Электроника — наиболее быстро развивающаяся область человеческой деятельности, и в современных условиях от уровня ее развития в значительной мере зависят успехи научно- технического прогресса.

Электроника включает в себя три области исследований:

1. вакуумную электронику;

2. твердотельную электронику;

3. квантовую электронику.

Каждая область подразделяется на ряд разделов и ряд направлений.

Раздел объединяет комплексы однородных физико-химических явлений и процессов, которые имеют фундаментальное значение для разработки многих классов электронных приборов данной области.

Направление охватывает методы конструирования и расчетов электронных приборов, родственных по принципам действия или по выполняемым ими функциям, а также способы изготовления этих приборов.

Читайте также:  Вячеслав Викторович Володин

Вакуумная электроника содержит следующие разделы:

1. эмиссионная электроника, охватывающая вопросы термоэмиссии, вторичной электронной эмиссии, туннельной эмиссии, исследование катодов и антиэмиссионных покрытий;

2. формирование потоков электронов и потоков ионов, управление этими потоками;

3. формирование электромагнитных полей с помощью резонаторов, систем резонаторов, замедляющих систем, устройств ввода и вывода энергии;

4. электронная люминесценция (катодолюминесценция);

5. физика и техника высокого вакуума (его получение, сохранение и контроль);

6. теплофизические процессы (испарение в вакууме, формоизменение деталей при циклическом нагреве, разрушение поверхности металлов при импульсном нагреве, отвод тепла от элементов приборов);

7. поверхностные явления (образование пленок на электродах и изоляторах, неоднородностей на поверхностях электрода);

8. технология обработки поверхностей, в т. ч. электронная, ионная и лазерная обработка;

9. газовые среды — раздел, включающий вопросы получения и поддержания оптимального состава и давления газа в газоразрядных приборах.

Основные направления вакуумной электроники охватывают вопросы создания электровакуумных приборов (ЭВП) следующих видов:

электронных ламп (диодов, триодов, тетродов, пентодов и т. д.);

ЭВП СВЧ (магнетронов, клистронов и т. п.);

фотоэлектронных приборов (фотоэлементов, фотоэлектронных умножителей), рентгеновских трубок;

газоразрядных приборов (мощных преобразователей тока, источников света, индикаторов).

Твердотельная электроника содержит следующие разделы, связанные в основном с полупроводниковой электроникой:

1. изучение свойств полупроводниковых материалов, влияние примесей на эти свойства;

2. создание в кристалле областей с различной проводимостью методами эпитаксиального выращивания, диффузии, ионного внедрения (имплантации), воздействием радиации на полупроводниковые структуры;

3. нанесение диэлектрических и металлических пленок на полупроводниковые материалы, разработка технологии создания пленок с необходимыми свойствами и конфигурацией;

4. исследование физических и химических процессов на поверхности полупроводников;

5. разработка способов и средств получения и измерения элементов приборов микронных и субмикронных размеров (нанотехнология).

Основные направления полупроводниковой электроники связаны с разработкой и изготовлением различных видов полупроводниковых приборов:

полупроводниковых диодов (выпрямительных, смесительных, параметрических, стабилитронов); усилительных и генераторных диодов (туннельных, лавинно-пролетных, диодов Ганна); транзисторов (биполярных и униполярных), тиристоров, оптоэлектронных приборов (светоизлучающих диодов, фотодиодов, фототранзисторов, оптронов, светодиодных и фотодиодных матриц), интегральных схем;

диэлектрическая электроника, изучающая электронные процессы в диэлектриках (в частности, в тонких диэлектрических пленках) и их использование, например, для создания диэлектрических диодов, конденсаторов;

магнитоэлектроника, использующая магнитные свойства вещества для управления потоками электромагнитной энергии с помощью ферритовых вентилей, циркуляторов, фазовращателей и т. д., и для создания запоминающих устройств, в т. ч. на магнитных доменах;

акустоэлектроника и пьезоэлектроника, рассматривающие вопросы распространения поверхностных и объемных акустических волн и создаваемых ими переменных электрических полей в кристаллических материалах и взаимодействия этих полей с электронами в приборах с полупроводниково-пьезоэлектрической структурой (кварцевых стабилизаторах частоты, пьезоэлектрических фильтрах, ультразвуковых линиях задержки, акустических усилителях и т. д.);

криоэлектроника, исследующая изменения свойств твердого тела при глубоком охлаждении для построения малошумящих усилителей и генераторов СВЧ, сверхбыстродействующих вычислительных и запоминающих устройств;

разработка и изготовление резисторов.

Наиболее важные направления квантовой электроники — создание лазеров и мазеров.

На основе приборов квантовой электроники строятся устройства для точного измерения расстояний (дальномеры), квантовые стандарты частоты, квантовые гироскопы, системы оптической многоканальной связи, дальней космической связи, радиоастрономии. Энергетическое воздействие лазерного концентрированного излучения на вещество используется в промышленной технологии. Лазеры находят различное применение в биологии и медицине.

Плазменная электроника — раздел физики плазмы, изучающий коллективные взаимодействия плотных потоков (пучков) заряженных частиц с плазмой и газом, приводящие к возбуждению в системе линейных и нелинейных электромагнитных волн и колебаний, и использование эффектов такого взаимодействия. Прикладные задачи, которые ставит и решает плазменная электроника, определяют её основные разделы: плазменная СВЧ-электроника, изучающая возбуждение в плазме интенсивного когерентного электромагнитного излучения, начиная от радио — и вплоть до оптического диапазона длин волн; плазменные ускорители, основанные на явлении коллективного ускорения тяжёлых заряженных частиц электронными пучками и волнами в плазме; плазменно-пучковый разряд, основанный на коллективном механизме взаимодействия плотных пучков заряженных частиц с газом; турбулентный нагрев плазмы плотными пучками заряженных частиц и коллективные процессы при транспортировке и фокусировке пучков в проблеме УТС; неравновесная плазмохимия, изучающая процессы образования возбуждённых молекул, атомов и ионов при коллективном взаимодействии пучков заряженных частиц с газом и плазмой.

Историческая справка. Плазменная электроника возникла после открытия А.И. Ахиезером и Я.Б. Файнбергом (1948), Д. Бомом и Э. Гроссом явления пучковой неустойчивости, представляющего собой вынужденное черенковское излучение плотным моноэнергетическим пучком электронов продольных электромагнитных волн в плазме. Одним из основных направлений коллективных методов ускорения, основы которых были заложены работами советских учёных В.И. Векслера, Г.И. Будкера и Я.Б. Файнберга, является метод ускорения электронов и ионов волнами плотности заряда в плазме и некомпенсированных пучках заряженных частиц, предложенный Я.Б. Файнбергом в 1956. В 1965 Е.К. Завойский и Я.Б. Файнберг предложили использовать электронные пучки и возбуждаемые ими электромагнитные волны для пучкового и турбулентного нагрева плазмы. Идея турбулентного нагрева плазмы позволила Е.К. Завойскому в 1969 году сформулировать основные принципы инерциального электронного УТС. В 70-х гг. Д.Д. Рютовым был предложен нагрев плазмы релятивистскими пучками в открытых ловушках.

Параллельно возникли и развивались направления, связанные со слабоионизованной плазмой. Открытие плазменно-пучкового разряда (1961) послужило основой создания новых источников плазмы, использующих энергию плотных электронных пучков для ионизации газа. Создаваемая в таких источниках плазма оказалась сильно неравновесной с большим числом возбуждённых ионов, атомов и молекул в метастабильных состояниях, инициирующих ряд новых типов плазмохимических реакций. Неравновесная плазма пучкового разряда является рабочим веществом в плазмохимических реакторах по разделению изотопов, в квантовых генераторах когерентного излучения — плазменных лазерах и мазерах и др.

Читайте также:  Диссертация на тему «Формирование готовности к освоению универсальных учебных действий у детей старшего дошкольного возраста в проектной деятельности», скачать бесплатно автореферат по специальности ВАК РФ 13.00.02 - Теория и методика обучения и воспитания (по областям и уровням образования)

Коллективные взаимодействия. Все направления плазменной электроники базируются на коллективных взаимодействиях потоков заряженных частиц с плазмой и возбуждении сильных электромагнитных полей. В основе коллективного взаимодействия лежат элементарные процессы излучения и поглощения электромагнитные излучения заряженными частицами: одночастичный и коллективный эффекты Черенкова, нормальный и аномальный эффекты Доплера, циклотронное и синхротронное излучение и поглощение, ондуляторное излучение, параметрическое резонансное излучение, переходное излучение, томсоновское и комптоновское рассеяние, Мандельштама — Бриллюэна рассеяние и др. Если в плазме определённая группа частиц совершает упорядоченное движение, то при достаточно большой их плотности имеет место коллективное излучение электромагнитных волн: часть энергии упорядоченного движения переходит в энергию электромагнитного излучения. Именно так происходит в плазменных усилителях и генераторах электромагнитных волн. В свою очередь, в регулярных полях возбуждённых в плазме волн сторонние заряженные частицы могут приобрести упорядоченную энергию (коллективное ускорение). В нерегулярных полях с относительно широким спектром плазменных волн заряженные частицы приобретают неупорядоченную энергию вследствие поглощения этих волн и происходит нагрев плазмы. Поскольку пучки заряженных частиц могут обладать весьма большой кинетической энергией, то и нагрев плазмы может быть значительным, вплоть до термоядерных температур. Такое возможно, однако, только в случае сильно ионизованной плазмы. В слабоионизованной плазме существенная часть энергии передаётся нейтральным атомам и молекулам, в результате чего происходит их разогрев, возбуждение, диссоциация и ионизация. Эти процессы, в свою очередь, инициируют новый тип разряда, плазменно-пучковый разряд, новые типы химических реакций (плазменно-химическии реакции), а также определяют работу нового типа квантовых генераторов — плазменных лазеров и мазеров, основанных на переходах в ионных и ионно-молекулярных уровнях энергий.

Отличия и достоинства плазменной электроники. Подобно вакуумной и квантовой электронике плазменная электроника основана на явлении индуцированного (вынужденного) излучения и поглощения электромагнитных волн заряженными частицами в плазме. Но если вакуумная электроника рассматривает излучение потоков заряженных частиц, движущихся в электродинамических структурах — металлических либо диэлектрических волноводах и резонаторах, то плазменная электроника исследует излучение потоков заряженных частиц, движущихся в плазме, в плазменных волноводах и резонаторах. Частота электромагнитные излучения в вакуумной электронике определяется конечными геометрическими размерами волноводов и резонаторов, а в квантовой электронике — дискретностью энергетических уровней излучателей (возбуждённых атомов и молекул); поэтому генераторы когерентного электромагнитного излучения в вакуумной и в квантовой электронике узкополосны, менять их частоту плавно практически невозможно. В плазменных приборах частота зависит не только от геометрических размеров волноводов и резонаторов, но и от плотности плазмы, поэтому излучатели в плазменной электронике многомодовые; меняя плотность плазмы, можно менять частоты в широком интервале. В этом заключается одно из существенных отличий и преимуществ плазменной электроники. Так, например, частота продольных ленгмюровских колебаний холодной изотропной плазмы (в системе ед. CGSE) где nр — плотность плазмы. При изменении реально используемой плотности плазмы в пределах (1010 — 1C19) см-3 можно возбуждать волны длиной (10-3 — 102) см, что перекрывает всю полосу СВЧ от субмиллиметрового и до дециметрового диапазона. При наложении на плазму внешнего магнитного поля диапазон частот собственных люд электромагнитных колебаний плазмы расширяется. Дисперсионное уравнение, описывающее возбуждение волн моноэнергетическим перелятивистским электронным пучком в простейшем случае холодной изотропной плазмы, записывается в виде

Здесь — ленгмюровская частота электронов пучка, nb — плотность, и — скорость пучка, k — волновой вектор, — комплексная частота, действительная часть которой представляет частоту возбуждённых продольных колебаний поля, а мнимая часть — инкремент нарастания их амплитуды.

Если пр пь, то, как следует из решения уравнения (1), частота нарастающих во времени колебаний

Из соотношения (2) видно, что механизмом раскачки колебаний является эффект Черенкова — скорость пучка находится в резонансе с фазовой скоростью волны, но несколько больше последней. Раскачка колебаний происходит с инкрементом, равным до тех пор, пока скорость пучка не уменьшится до скорости волны. Отсюда можно найти амплитуду насыщения поля волны:

Второе отличие плазменной электроники от вакуумной состоит в том, что если в последней возбуждаются поверхностные волны, либо основные моды электромагнитных колебаний диэлектрических волноводов и резонаторов, то в плазменной электронике происходит также эффект возбуждение высоких объёмных мод с намного меньшей геом. размеров плазменных волноводов и резонаторов. Максимальная достижимая напряжённость электрического поля в плазме (с — скорость света) и при плотности плазмы np(10141018)см-3 составляет 107109 В/см. В таком поле весьма эффективно будут ускоряться заряженные частицы до больших энергий на относительно малых длинах (на длине ~100 см частицы могут ускоряться до ~103 МэВ). Существенно и то, что при возбуждении высоких мод объёмных колебаний ослабляется возможность пробоев на стенках плазменных волноводов и резонаторов.

Основное преимущество плазменной электроники перед вакуумной — пропускать пучки с большими токами. В вакуумных системах токи пучков ограничены сверху пространственным зарядом. Например, через вакуумный цилиндрический волновод радиуса R можно транспортировать трубчатый электронный пучок с током, не превышающим

Здесь — релятивистский фактор, — кинетическая энергия электрона, rb — средний радиус пучка толщиной При движении потоков заряженных частиц в плазме происходит компенсация объёмного заряда и тока индуцированными в плазме полями и токами. Благодаря этому в плазменных системах возможно достижение больших токов, но и здесь существует верхний предел, определяемый устойчивостью пучка

Читайте также:  Бухгалтерский учет и аудит расчетов с подотчетными лицами дипломная работа

Релятивистская плазменная электроника. Мощные мегавольтные электронные пучки открыли новые перспективы перед плазменной электроникой, связанные с релятивизмом электронов. Развитию релятивистской плазменной электронике способствовало теоретическое доказательство увеличения с ростомэффективности плазменно-пучкового взаимодействия

несмотря на уменьшение линейного инкремента Imw — Электромагнитные колебания и волны в плазме обладают самыми разнообразными фазовыми скоростями. В плазме существуют колебания, фазовая скорость которых намного меньше скорости света и даже тепловой скорости частиц; к их числу относятся ленгмюровские колебания, ионно-звуковые и альфеновские волны и др. Такие волны легко возбуждаются нерелятивистскими пучками заряженных частиц. Но, обладая малыми фазовыми скоростями, такие волны заперты в плазме, не излучаются, а со временем диссипируют, поглощаясь частицами плазмы. Именно поэтому возбуждение медленных волн в плазме нерелятивистскими пучками заряженных частиц служит эффективным каналом для пучкового нагрева плазмы.

С другой стороны, в плазме существуют и быстрые электромагнитные волны, фазовая скорость которых Особенно много таких электромагнитных волн в плазме, находящейся в сильном внешнем магнитном поле. Очевидно, что возбуждение быстрых волн в плазме возможно лишь интенсивными релятивистскими электронными пучками. Поэтому с появлением мощных источников релятивистских электронных пучков стала бурно развиваться релятивистская плазменная СВЧ-электроника.

Релятивистские скорости и большие токи изменяют характер взаимодействия сильноточных релятивистских электронных пучков с плазмой. Тот факт, что при даже значит. потери энергии электронов не нарушают условие черепковского резонанса, проявляется в увеличении кпд генерации электромагнитного излучения (6). Эта оценка справедлива, пока При больших токах пучка величину удаётся определить только численно. В оптимальных условиях, когда геометрии пучка и плазмы совпадают, значения h весьма высоки и медленно спадают с ростом тока пучка (рис.).

Зависимость кпд генерации электромагнитного излучения в плазменном генераторе с релятивистским пучком от тока пучка Ib.

При 1 МэВ и Ib = 2I0 25 кА (в пучке с 0,15 см при этом пb 5 x 1012 см-3) 0,2, т.е. около 20% электрической энергии пучка может перейти в энергию электромагнитного излучения; мощность излучения составит 5 ГВт. Поскольку фазовая скорость электромагнитных волн при этом очень близка к скорости света, всё излучение практически без потерь будет выходить из плазмы (потери вследствие отражения от поверхности плазмы не превышают 2,5%).

Частота генерируемого излучения в случае даётся формулой:

Здесь — поперечное волновое число возбуждаемой пучком плазменной электромагнитной волны. В случае возбуждения аксиально-симметричных мод колебании в плазме с трубчатой геометрией, совпадающей с геометрией пучка (rь = rр,), имеем

Из формул (7) и (8) следуют весьма важные выводы. При условии

в системе будет возбуждаться одна единственная основная мода колебаний, частота которой растёт с увеличением плотности плазмы; т. е. частота, в отличие от вакуумной электроники, не жёстко связана с размерами резонатора, а может меняться в широком диапазоне. Для указанных выше параметров плазмы и пучка 2,5 x 1011 с-1 (что соответствует длине волны 8 мм) при «рмакс 5 x 1013 см-3. Поскольку фазовая скорость возбуждаемой волны близка к скорости света, поле волны сильно непотенциально, причём энергия поля составляет 20% от энергии пучка. А это означает, что напряжённость поля достигает величины Емакс = 3 x 106 В/см; такое поле может обеспечить ускорение заряженных частиц в плазме до энергии 300 МэВ на длине 100 см, что безусловно является ещё одним преимуществом сильноточной релятивистской плазменной электроники.

Такое высокоэффективное возбуждение электромагнитного излучения, так же как и эффективное ускорение заряженных частиц, волнами в плазме, возможно только в условиях одномодового возбуждения, т. е. в условиях (9). Если же плотность плазмы очень велика, так что выполняется неравенство для большого числа мод колебаний, то в плазме происходит возбуждение многомодового излучения, которое быстро поглощается электронами плазмы и приводит к их разогреву. Кпд преобразования энергии пучка в энергию многомодового излучения при этом остаётся прежним (6), что позволяет дать оценку разогрева электронов плазмы сильноточным релятивистским электронным пучком:

Для приведённых выше параметров пучка при пр 1015 см-3 имеем Те500 эВ (5 x 106К), что свидетельствует о возможности нагрева плазмы сильноточными пучками электронов до высоких термоядерных температур и инициирования термоядерных реакций.

Сильноточные релятивистские электронные пучки имеют ещё одно преимущество. Они могут инициировать плазменно-пучковый разряд и создавать плазму высокой плотности в различных плазмохимических реакторах. Обладая большой энергией в целом, релятивистские электронные пучки способны обеспечить большой выход в одном импульсе и высокую среднюю мощность при использовании пучков импульсно-периодических режимов. А высокая энергия электронов обусловливает хорошую однородность плазмохимических реакторов даже при очень больших давлениях газа в них, намного превышающих атмосферное. Именно благодаря таким преимуществам на плазменно-пучковом разряде с использованием сильноточных релятивистских электронных пучков реализованы химические лазеры на водородо-фтористых смесях, дающие когерентное излучение на длине волны 3 мкм с энергией до нескольких кДж в импульсе длительностью 100 нc и обладающие кпд по отношению к энерговкладу пучка в газ до 700%. Созданы эксимерные плазменные лазеры на смесях Аr + Fr + Кr субмикронного диапазона длин волн с энергией до 1 кДж в импульсе длительностью40 нc и кпд до 10%.

Релятивистская плазменная электроника, в особенности экспериментальная, сделала только первые шаги. Теория уже сформулировала ряд интересных физических проблем, связанных с релятивизмом и сильноточностью пучков, которые требуют экспериментов исследования. Тем не менее, много нерешённых проблем осталось и у теории, и в первую очередь исследования различных механизмов взаимодействия электронных пучков с плазмой.

электроника квантовый вакуумный плазменный

Оцените статью
VIPdisser.ru